

Ostrowski’s Method for Finding Roots
Namir Shammas

Introduction

Mathematicians, statisticians, engineers, and scientists frequently deal with problems that require the
calculation of one or more roots of functions. When HP launched its first programmable calculator, the
HP-65 in 1974, the accompanying Standard Pac included a root-seeking program. The HP-65 Math Pac 1
also included another root-finding program. Over the following years, HP released new programmable
calculators; each included root-seeking programs in their standard and math pacs. In 1978, HP launched
the HP-34C that contained the very first built-in root-finding Solver. The Solver was a new, powerful,
and convenient tool for calculating the roots of single-variable nonlinear equations. The Solver
implemented a clever version of the Secant method. This method along with Newton’s method remained
the two favorite root-seeking algorithms for many decades among users of programmable HP calculators.
In this article I present the Ostrowski root-seeking method which I consider a gem of an algorithm that
has not received much publicity until somewhat recently. I also present listings for Ostrowski’s method
to run on the WP34S calculator (using a repurposed HP 30b) and on the new HP 39gII. Before I discuss
the algorithm and present the two listings, I would like to first shed some light on the person of
Ostrowski.

Ostrowski: A Short Biography

Alexander Markowich Ostrowski (1893 to 1986) was a talented Russian mathematician who was gifted
with a phenomenal memory. He was studying math at Marburg University in Germany, when World War

I broke out. He was therefore interned as a hostile foreigner. During this
period, he was able to obtain limited access to the university library.
After the war he resumed his studies at the more prestigious University
of Göttingen and was awarded a doctorate in mathematics in 1920. He
graduated summa cum laude and worked in different universities. He
eventually moved to Switzerland to teach at the University of Basel,
before the outbreak of World War II. Ostrowski fared well living in that
neutral country during the war. He taught in Basel until he retired in
1958. He remained very active in math until late in his life.

This gifted and prolific mathematician was engaged in various
mathematical problems. The advent of computers catapulted Ostrowski
to delve into numerical analysis. He studied iterative solutions of large
linear systems. Ostrowski passed away in 1986 in Montagnola, Lugano,

Fig. 1 – Alexander Ostrowski.
Switzerland. He had lived there with his wife during his retirement.

The Algorithm

Ostrowski tackled the problem of calculating a root for a single-variable non-linear function in a new
way. Most of the methods we know perform a single refinement, for the guess of the root, in each
iteration. Ostrowski’s novel approach was to obtain an interim refinement for the root and then further
enhance it by the end of each iteration. The two-step iterations in Ostrowski’s method use the following
two equations:

yn = xn – f(xn) / f ′(xn) (1)

HP Solve # 28 Page 9 Page 1 of 10

xn+1 = yn – f(yn)(xn-yn) / (f(xn) – 2f(yn)) (2)

Equation (1) applies the basic Newton algorithm as the first step to calculate yn which Ostrowski uses as
an interim refinement for the root. The iteration’s additional refinement for the root comes by applying
equation (2). Ostrowski’s algorithm has a fourth-order convergence, compared to Newton’s algorithm
which has a second-order convergence. Thus Ostrowski’s method converges to a root faster than
Newton’s method. There is the extra cost of evaluating an additional function call to calculate f(yn) in
Ostrowski’s method. This extra cost is well worth it, since, in general, the total number of function calls
for Ostrowski’s method is less than that for Newton’s method.

Ostrowski’s method has recently inspired quite a number of new algorithms that speed up convergence.
These algorithms calculate two and even three interim root refinements in each iteration. While these
methods succeed in reducing the number of iterations, they fail to consistently reduce the total number of
function calls, compared to the basic Ostrowski’s method. For example, Grau and Diaz-Barrero proposed
the following equations for their algorithm:

yn = xn – f(xn) / f ′(xn) (3)

µ = (xn-yn) / (f(xn) – 2f(yn)) (4)

zn = yn - µ f(yn) (5)

xn+1 = zn - µ f(zn) (6)

The algorithm starts with a Newton step using equation (3) to calculate yn as the first interim refinement
for the root. Equations (4) and (5) yield a second interim refinement, zn. Equation (6) provides the
iteration’s final refinement for the root. The above equations show that each iteration requires two
additional function calls needed to calculate f(yn) and f(zn). I compared the total number of function calls
for Ostrowski’s method with the Grau and Diaz-Barrero method for different test functions. The result is
a mixed one, as neither method consistently performed better.

In the reference section you will find a reference to one of many books written by Ostrowski. The second
cited reference is a paper by Walter Gautschi about the life, works, and students of Ostrowski. Gautschi
himself is a mathematician and one of the last students of Ostrowski. Gautschi has published books in
the field of numerical analysis. The third cited reference points to a recently published book written by
him. I also included references to several articles, I found on the Internet, which present variants for the
Ostrowski’s method. I encourage you to search for these articles and learn more about these new
algorithms.

The HP 39gII Listing
Table 1 contains the commented listing for the HP 39GII calculator. The table shows the following functions:

• The function MYFX which implements the code for calculating the mathematical function f(x).

• The function OST which performs the calculations for the Ostrowski method. This function makes several
calls to function MYFX.

• The function GO which uses forms and message boxes to interact with the user. This function also calls
function OST to obtain the number of iterations and the root value.

HP Solve # 28 Page 10 Page 2 of 10

Table 1 – The HP 39gII Listing

Statement Comment
EXPORT MYFX(X) Define function for f(x)=0.
BEGIN
X-10*LN(1+4*X2+2*X^4);
END;
 EXPORT OST(X,T) Define the function for the Ostrowski method. The parameter X is

the initial guess for the root. The parameter T is the tolerance
value.

BEGIN
LOCAL DIFF,FX,X0,FY; Declare multi-character local variables.
0I; Initialize the iteration counter.
REPEAT Start the main iteration.
I+1I; Increment the iteration counter.
XX0; Assign a copy of X to X0.
MYFX(X)FX; Calculate and store f(X).
0.001*(ABS(X)+1)H; Calculate and store the increment h used to numerical evaluate the

derivative.
H*FX/(MYFX(X+H)-FX)DIFF; Calculate and store the refinement for the guess.
X-DIFFY; Calculate and store the value for y.
MYFX(Y)FY; Calculate and store the value for f(y).
Y-FY*(X-Y)/(FX-2*FY)X; Calculate and store the updated guess for the root.
UNTIL ABS(X-X0) <= T; Did the solution converge?
{X,I}; Create a list containing the refined guess for the root and the

iteration counter. This list is the result of the function OST.
END;

EXPORT GO() Function that drives the root-seeking program
BEGIN
LOCAL LST; Declare a local variable.
INPUT(T,"Tolerance","Toleran
ce = ","Enter tolerance for
root",1E-8);

Prompt user with a form to enter the tolerance for the root. Store
the tolerance value in variable T.

INPUT(X,"Initial
Guess","Guess = ","Enter
initial guess for the root",
50);

Prompt user with a form to enter the initial guess for the root.
Store the initial guess in variable X.

OST(X,T)LST;

Call function OST with the arguments X and T. Store the resulting
list in list variable LST.

MSGBOX("Number of iterations
= " + LST(2));

Display the number of iterations in a message box. Uses
expression LST(2) to obtain the number of iterations.

MSGBOX("Root = " + LST(1)); Display the root in a message box. Uses expression LST(1) to
obtain the value for the refined root.

LST(1); Return the root.
END;

HP Solve # 28 Page 11 Page 3 of 10

The code for function MYFX is simple and requires a single statement for the tested function. The function
MYFX has the parameter X to pass the value needed to calculate the mathematical function f(x).

The code for the function OST has the parameters X and T which pass the values for the initial guess for the root
and the tolerance, respectively. Notice the following aspects about this function:

• The LOCAL statement that declares a number of local variables that have multi-character names.

• The REPEAT-UNTIL loop that implements the iterations needed to refine the guess for the root. The
UNTIL clause tests the convergence criterion. The test determines if the absolute difference between the
old guess for the root and the new one falls at or below the tolerance value.

• The function’s return value which is the list {X,I}. This list contains the refined root value, X, and the
number of iterations, I.

The code for the parameter-less function GO has the following three parts:

• Two INPUT statements that display input forms to obtain the values for the tolerance and the initial guess
for the root.

• A call to function OST. The function GO stores the result of OST in the local list variable LST.
• Two MSGBOX statements to display message boxes showing the number of iterations and the refined

guess for the root. The function uses the expression LST(1) and LST(2) to access the root value and
number of iterations, respectively.

The function GO returns the refined root value. This approach allows you to store the root for additional
inspection. You can invoke functions MYFX, OST, and GO from the command input line.

After you key in the three functions in Table 1, you can run the program by performing the following tasks:

1. Type GO at the command input line. The function GO first displays the Tolerance input form, shown in
Figure 2. You can enter a new value for the tolerance and then press the OK menu option (which is
associated with the F6 menu key), or simply accept the current tolerance value and press the OK menu
option.

 Fig. 2 – The prompt for the tolerance value.

2. The function displays the Initial Guess input form, shown in Figure 3. If the current guess is not 50, type
in 50 and then press the OK menu option. Otherwise, just press the OK menu option.

 Fig. 3 – The prompt for the initial guess for the root.

HP Solve # 28 Page 12 Page 4 of 10

3. The function displays the number of iterations, using the message box shown in Figure 4. Click the OK
menu option to resume program execution,

 Fig. 4 – The number of iterations.

4. The function displays the value for the root, using the message box shown in Figure 5. Press the OK menu
option to end the program.

 Fig. 5 – The refined root value.

I encourage you to edit function MYFX in Table 1 and replace the currently coded function with
a different one. Table 2 shows a list of additional test functions. The table also includes columns
that show the recommended initial root and the final root you get. Using the tolerance value of
1E-8 should be adequate for the test functions in Table 2.

Table 2 – A List of Additional Test Functions

Mathematical Function Initial Guess for the Root Root
f(x) = x3 + 4x2 – 15 3.0 1.6319808055661
f(x) = x exp(x2) – sin2(x) + 3cos(x) + 5 -2.0 -1.2076478271309
f(x) = sin(x) – x/2 1.1 1.8954942670340
f(x) = 10 x exp(-x2) – 1 1.0 1.6796306104284
f(x) = cos(x) – x 10 0.73908513321516
f(x) = sin2(x) – x2 + 1 0.1 1.4044916482153
f(x) = exp(-x) + cos(x) 0.1 1.7461395304080

The WP34S Listing
Let me present the listing, in Table 3, for my implementation of the Ostrowski method on a WP34S
calculator. The program labels appear in red characters so they are easier to locate. The emulator I used
for this article is running version 3 of the calculator software.

HP Solve # 28 Page 13 Page 5 of 10

Table 3 – The WP34S Listing

Program Step Comment Program Step Comment
LBL'OSTR' Start and initialize the program. x
CLREG Clear all the registers. STO 02 Calculate small increment, h, used to

numerically evaluate the slope.
EEX RCL 00
+/- XEQ D Calculate f(x).
8 STO 03 Store f(x).
STO 05 Store 1E-8 in register R05 as the

initial tolerance value.
RCL 00

RTN RCL 02
LBL D Label used to code f(x)=0. +
LocR 003 Declare three local registers-R.00,

R.01, and R.02.
XEQ D Calculate f(x+h).

STO .00 R.00 = x RCL 03
x^2 -
STO .01 R.01 = x2 RCL 02
x^2 /
STO .02 R.02 = x4 1/x
RCL .00 Start evaluating f(x). RCL 03
1 x Calculate the slope at x as (f(x+h)-

f(x))/h.
RCL .01 STO- 01 Calculate y = x - f(x)/f ′(x).
4 RCL 01
* XEQ D Calculate f(y).
+ STO 04
RCL .02 RCL 00
2 RCL 01
* -
+ x=0?
LN GTO 01
1 x
0 RCL 03
x RCL 04
- STO+ X
PopLR Remove local registers. -
RTN /
LBL A Label used to rerun the program. RCL 01
CLα Clear the alpha register to start

building new text.
xY

α'TOL' - Calculate y-f(y)(x - y)/(f(x) - 2 f(y)).
α'ER?' RCL 00 Recall older x.
RCL 05 Push current tolerance value in the

stack.
xY

PROMPT Prompt for the tolerance value. STO 00 Store new x.
STO 05 -

HP Solve # 28 Page 14 Page 6 of 10

Program Step Comment Program Step Comment
LBL B Label used to simply enter a new

guess for the root.
ABS

CLα Clear the alpha register to start
building new text.

RCL 05

α'GUE' xY
α'SS?' x>Y? |new x – old x| > tolerance?
PROMPT Prompt user to enter the guess for the

root.
GTO 00 Resume iterations.

STO 00 LBL 01
0 CLα Clear the alpha register to start

building new text.
STO 06 Initialize the loop counter. α'ITE'
LBL 00 Start of the main loop. α'R='
INC 06 Increment iteration counter. RCL 06
RCL 00 PROMPT Display the number of iterations.
PSE 10 Display intermediate guess for the

root.
CLα Clear the alpha register to start

building new text.
STO 01 Initialize y = x. α'ROO'
ABS α'T='
1 RCL 00
+ PROMPT Display the refined guess for the root.
EEX GTO B
3 END
+/-

If you are familiar with programming the HP-41C (and to a lesser extent other RPN programmable
calculators like the HP-11C, HP-15C, and HP 35s) the above listing should be somewhat familiar to you.
You will still find in Table 1 a number of new and different programming commands and features that are
special to the WP34S. These new and different features are:

1. The program supports alphanumeric labels that are up to three characters long. The first command
is LBL 'OST' which complies with this feature. This feature differs from the six character limit
of alphanumeric labels in the HP-41C.

2. The WP34S calculator has four user defined keys labeled A, B, C, and D. They help you to
easily execute code that you place after LBL A, LBL B, LBL C, and LBL D, respectively. The
program in Table 1 uses the labels for keys A, B and D. By comparison, the HP-41C has more
than four user defined keys.

3. The program uses LBL D to code the target mathematical function f(x). You can evaluate the
function at any value of your choice by entering that value and pressing the key D. The code for
calculating f(x) uses the local variables feature. The command LocR n dynamically allocates n
local registers. The command also makes available 16 local flags, regardless of the value of n.
The WP34S allows you to directly access the first 16 local registers, using the dot as a prefix
followed by two digits. Thus to store a value in the first local register, you use STO .00.
Likewise, to recall a value from the second local register, you use RCL .01. Beyond the 16th
register, you must use indirect addressing. The above code uses the command LocR 3 to

HP Solve # 28 Page 15 Page 7 of 10

dynamically allocate three local memory registers, R.00, R.01, and R.02. The command PopLR
de-allocates the local registers. It is optional and I am including it for the sake of demonstration.
By default, the local variables and flags in a subroutine are automatically removed when the
subroutine reaches a RTN or END statement.

4. The program uses the alpha register to prompt the user for input and to display tagged/commented
output values. By default, the WP34S simply appends characters to the alpha register. This
feature is the reverse of HP41C’s support for the alpha register, where inserted text automatically
overwrites existing text in that register. Appending text in the HP-41C requires that you start with
the special append character. Thus, to start inserting new text in the alpha register of the WP43S,
you must first use the command CLα to explicitly clear the alpha register. Each program step can
take up to three characters. So, for example to build the prompt text TOLER? I need two
program steps. The first step inserts the first three characters TOL, while the second step inserts
the last three characters ER?. The WP34S displays the character α to the left of the inserted text.

You can insert one character per program step, but that is both wasteful and makes the listing
harder to read. While entering letters in the alpha register is easy, entering the space, the question
mark, the equal sign, and other punctuation characters requires some practice. The WP34S
calculator stores various non-alpha characters in different menus and key combinations. I would
like to point out that you can also append numbers to the alpha register. This feature, which I
chose not to use in this article, can help to prompt program users in the input and display of array
and matrix elements.

5. The program uses the INC command to increment the value of a memory (and also stack) register
by one. The above listing uses the command INC 06 to increment memory register 06 that stores
the iteration counter. The WP34S has the DEC command to similarly decrement the value of a
register by one. The INC and DEC commands are very handy in directly adding or subtracting 1
from a memory or a stack register without pushing 1 into the stack. This direct action does not
disturb the stack. When all of the stack’s contents are relevant, using INC or DEC is a welcome
feature.

6. The PSE n command pauses the program for a specified number of tenths of a second. The above
listing uses the command PSE 10 to pause for one second.

The above listing has LBL D coded for the following function:

f(x) = x – 10 ln(1 + 4x2 + 2x4)

Let’s run the program to calculate the root with the initial guess of 50 and a tolerance value of 1E-8. The
root is approximately 223.226. To run the program, perform the following steps:

1. Execute the command XEQ 'OST' to start and initialize the program. To rerun the program,
simply press the key A.

2. The program prompts you for the tolerance value, as shown in Figure 6. The display shows the
current tolerance value of 0.00000001. This is the initial value set by the program in step 1. If
you enter a different value and rerun the program, you will see your most recent tolerance value.
In the case of our example, accept the current tolerance value and press the R/S key.

HP Solve # 28 Page 16 Page 8 of 10

 Fig. 6 – The prompt for the tolerance value.

3. The program prompts you to enter the initial guess for the root, as shown in Figure 7. The value
in the X register is a leftover from step 2. Just ignore it! Enter the value of 50 and then press the
R/S key.

 Fig.7– The prompt for the initial guess for the root.

4. The program pauses to display the series of improved guesses for the root. When it finds a refined
root guess that is within the tolerance you specified, it displays the number of iterations, as shown
in Figure 8. The figure shows how the alpha and X registers display a tagged (or commented)
value. Simply press the R/S key to resume program execution.

 Fig. 8 – The number of iterations.

5. The program displays the improved guess for the root, as shown in Figure 9. Again, the figure
shows the alpha and X registers displaying a tagged root value.

 Fig. 9 – The refined root value.

You can press the R/S key and resume at step 3. Enter the initial guess of 1 to locate the other root for the
function. The calculator displays the refined root of 0.025023481 in 4 iterations. Remember that you can
evaluate the currently coded function f(x) by entering a value for x and then pressing the key D.

I encourage you to edit the code in LBL D in Table 3 to replace the currently coded function with
the ones that appear in Table 2.

HP Solve # 28 Page 17 Page 9 of 10

Observations and Conclusions

The article introduced you to Ostrowski’s root-finding method. This fourth-order method excels over
Newton’s second-order method and Halley’s third-order method. While Ostrowski’s method has inspired
new algorithms that further reduce the number of iterations, the basic Ostrowski method remains the most
optimum as far as the total number of function calls. In addition to introducing you to the Ostrowski
method, the article also presented two example listings: the BASIC-like program for the new HP 39gII
and the RPN program for the repurposed HP 30b - WP34S. My hope is that the article will encourage
you to use the efficient Ostrowski’s method in future programs that you write.

References

1. A. M. Ostrowski, “Solution of Equations and Systems of Equations”, Academic Press; second
edition (1966).

2. Walter Gautschi, "Alexander M. Ostrowski (1893–1986): His life, work, and students", can be
downloaded from http://www.cs.purdue.edu/homes/wxg/AMOengl.pdf.

3. Walter Gautschi, "Numerical Analysis”, Birkhäuser Boston; 2nd ed. 2012 edition (December 6,
2011).

4. W. Kahan, "Personal Calculator Has Key to Solve Any Equation f(X)=0", Hewlett-Packard
Journal, December 1979.

5. F. Soleymani and M. Sharifi, “A New Derivative-Free Quasi-Secant Algorithm For Solving Non-
Linear Equations", World Academy of Science, Engineering and Technology 55 2009.

6. Xia Wang and Liping Liu, "New eighth-order iterative methods for solving nonlinear equations",
Journal of Computational and Applied Mathematics 234 (2010) 1611-1620.

7. Reza Ezzati and Elham Azadegan, "A simple iterative method with fifth-order convergence by
using Potra and Pták’s method", Mathematical Sciences Vol. 3, No. 2 (2009) 191-200.

8. Guofeng Zhang, Yuxin Zhang, and Hengfei Ding, "New family of eighth-order methods for
nonlinear equation", COMPEL volume 28, issue 6, 2009.

9. M. Heydari, S. M. Hosseini, and G. B. Loghmani, "ON TWO NEW FAMILIES OF ITERATIVE
METHODS FOR SOLVING NONLINEAR EQUATIONS WITH OPTIMAL ORDER",
Applicable Analysis and Discrete Mathematics 5 (2011), 93-109.

About the Author

Namir Shammas is a native of Baghdad, Iraq. He resides in Richmond, Virginia,
USA. Namir graduated with a degree in Chemical Engineering from the
University of Baghdad. He also received a master degree in Chemical
Engineering from the University of Michigan, Ann Arbor. He worked for a few
years in the field of water treatment before focusing for 17 years on writing
programming books and articles. Later he worked in corporate technical
documentation. He is a big fan of HP calculators and collects many vintage
models. His hobbies also include traveling, music, movies (especially French
movies), chemistry, cosmology, Jungian psychology, mythology, statistics, and
math. As a former PPC and CHHU member, Namir enjoys attending the HHC
conferences. Email him at: nshammas@aol.com

HP Solve # 28 Page 18 Page 10 of 10

http://www.cs.purdue.edu/homes/wxg/AMOengl.pdf
mailto:nshammas@aol.com

