
From The Editors – Issue 31 
 
It is Spring and welcome to the new issue of HP Solve.  It is new because it is a new issue, and it is new 
because HP Solve has a new direction.  The HP Solve E-Newsletter is now dedicated to Teachers and 
STEM education.  Advanced technical support for calculators will continue with at least one feature 
article in each issue to be included here. 
  

Here is the content of this issue 
 
S01 – Classroom Control at the Click of a Mouse   HP advances its classroom teacher support with this 
advanced method of putting the teacher in charge and in control. 
 
S02 – The Past, Present and Future of HP Solve   by Richard J. Nelson, Jessica Cespedes, & Kevin 
Regardie.  HP has been supporting its calculator users with a newsletter since September 1974.  The 
history of HP Solve puts this support in historical perspective and it outlines what expected in the future.. 
 
S03 – Quadratics and Rocketry  by your editor, Kevin Regardie.  Explore the real world applications of 
the quadratic equation in preventing avalanches, plot a rocket trajectory, and safely launching fireworks.  
Lesson plans and teacher aids/answers  are provided. 
 
S04 – S.T.E.M. Education Moves full-“S.T.E.A.M.” Ahead!  by Laura Berlins.  STEM is a buz word in 
the Education World.  Most readers know that it is for Science, Technology, Engineering, & Mathematics.  
Adding an A for the Arts is advocated in this article.  
 
S05 – Navigating the ‘Common Core’ Maze  by Kevin Regardie provides insights as to what Common 
Core State Standards mean. 
 
S06 – STEM is DEAD; Long live STEMx  by Jim Vandies who explains how the acronym STEM 
(Science, Technology, Engineering, and Mathematics) is no longer suitable to describe the focus of a 
technology driven education program.  
 
S07 – HP Catalyst, Real-time assessment and applied Business Math by HP.   HP launched the HP 
Catalyst Initiative in 2010 as described in this article. 
 
S08 – Regular/assorted Columns   
 

  ♦ From the editors.   

  ♦HP Calculator Tip – Use List Processing. 
  ♦What is RPN? 
  ♦ Technical article on HP’s Randomness features.  You won’t find this stuff in your Owner’s 

Manuals. 
 
 
That is it for this issue.  We hope you enjoy it.  Write us with your ideas for future topics including being 
an author yourself at: hpsolve@hp.com 
 
 
Kevin Regardie – STEM Editor. 
Richard J. Nelson – Technical Editor. 
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HP Calculator Tip – Use List Processing 
 
One of the many very powerful features of HP’s scientific/graphing calculators is list processing.  List 
Processing was first offered on the HP28C in June of 1986.  Data (numeric or statistical) is entered into a 
list and the list processed by a wide range of functions.  The list feature allows the data to be entered once.  
Copies may be made or stored for future use.  You may then sum the list (most common use), sort the list, 
reverse the order of the list, calculate the difference between values, multiple each value in the list, etc. 
 
The most common use of List Processing is adding a batch of numbers.  Most users will key the value of 
each number, N values, followed by ENTER to place the values onto the stack.  The + key is then pressed 
N-1 times to get their total.  The Calculator Tip is to train yourself to ALWAYS enter your 
numerical values into a list.  If the values are equal to the number of levels on the stack, or less, you may 
save time doing it the old fashioned way.  If you have five or more values you should take the time to use 
List Processing.  You will save time and increase the accuracy of your work because you may go back 
and review/edit your values without having to re-enter them. 
 

What is RPN? 
 
Many teachers may not be familiar with the HP calculator term RPN.  RPN is an acronym for Reverse 
Polish Notation.  Any term starting with Reverse isn’t an attractive term so RPN students often start out 
with a negative bias.  RPN is a calculator user interface that works with an automatic stack in such a way 
that an equal key is meaningless to solving problems.  Normally/historically an RPN calculator has a 
double wide ENTER key e.g. HP 35s.  In terms of mathematics logic RPN is called postfix.  Normal 
algebraic logic is called infix.  These terms describe the order of the data and the operands in calculator 
problem solving.  
 
In the early days of calculators the explosion of technology continually lowered the cost of the internal 
electronics and the technical advantages of RPN became less of a cost advantage.  Calculators converted 
infix problems to postfix problems internally for simpler problem solving logic.  When other manu-
facturers joined HP in the scientific/financial calculator business they decided that algebraic logic better 
matched the solution of problems expressed with infix notation e.g.  1 + 2 x 3 = ?.   
 
RPN(1) has many advantages but it is a different way of problem solving that doesn’t use parentheses.  It 
is a way of thinking that must be studied/understood.  Learning RPN takes but a few minutes and it really 
makes problem solving much easier.  The idea is simple.  You enter the data and then you decide what to 
do with it.  If you want to add you press the + key.  In the early days there was a “calculator-logic-system 
war” between HP and other manufacturers.  One T-shirt, for example, sported  ENTER > =.  RPN is 
simpler and faster.  RPN was different and uniquely HP.  Serious problem solvers saw the advantages and 
they have difficulty with algebraic calculators.  Algebraic logic users simply can’t use an RPN calculator. 
 
There are two points that make the RPN “controversy” especially interesting.  The first one is that one 
system is “better” than the other.  Better is a subjective term and in problem solving there is only one 
solution, the correct one.  Is faster “better”?  Is fewer keystrokes “better”?  Is easy error correction 
“better”?  Remember that we are talking about solving mathematics problems.  NO calculator solves 
problems exactly like they are written on paper.  ALL calculators have user interface convenience features 
that make this statement true. 
 
Let’s examine the example problem given above: 1 + 2 x 3 =?  This will illustrate the second less known 
point regarding RPN.  A vital feature of algebraic calculators is that they follow a defined hierarchy of  
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operation order.  If you try this example and you press the corresponding keys on various calculators 
proceeding left to right you will discover that you could get two answers: 9 or 7.  Why is this?  Some 
calculators have no logic and simply perform the operations as they are keyed.  Machines that return 9 as 
an answer might be called arithmetic logic, i.e. no logic.  The machines that return 7 as an answer follow 
an algebraic logic in that multiplication is performed before addition.  What was the problem?  We all 
agree that there can only be one correct answer. 
 
Perhaps it is the way the problem is given.  It could be (1 + 2) x 3 = ? OR if could be 1 + (2 x 3) = ?.  This 
is where parentheses play an important role in mathematics.  Calculators that are truly algebraic will 
return 7.  Algebraic logic Calculators always use parenthesis, but not all calculators that use parentheses 
are algebraic (using the hierarchy of operations).  Calculators that use RPN cannot solve the problem 
without the parentheses.  Since there are no parentheses on an RPN (only) calculator the problem without 
parentheses cannot be solved because it is unclear.  Many calculator users won’t even think about this. 
 
Thus far three of the common four calculator user interfaces has been discussed – Arithmetic (no logic), 
RPN (postfix logic), and algebraic (infix logic).  There is a fourth logic system that most readers use on 
their computers every day.  It is called command line logic.  The idea is that the user types in the problem 
with data, operators, and parentheses pretty much as they find it in their text books.  The machine parses 
the command line and if the input follows all of the rules it returns an answer.  If not it returns an error.  
All graphing calculators use Command Line logic. 
 
Here is one more interesting factoid regarding HP calculators.  HP has always made calculators of all four 
user logic interfaces and no other calculator manufacturer does that.  In fact many of HP’s current models 
give the user a choice of two or even three user interfaces. 
 
 
 ____________________________________________________________________________________ 
Notes:  From the Editors 
 

(1)  For a more technical explanation of RPN see HP Solve issue #4 page 3. 
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The Randomness of HP 
Richard J. Nelson & Namir Shammas 

 

Introduction 
 

Randomness is a term we have all heard because it is frequently used in normal life and mathematics.  We 
flip a coin to “let fate” make a decision.  We draw numbered balls from a mixed up container for Bingo 
and Lotto drawings.  We finger snap a spinner, shuffle a deck of cards, or roll a pair of dice for choices to 
be made for board games.  The list is long.  Exactly what is meant by, and what are the important qualities 
of an event or number being truly random?  How may we get our own random numbers?  This seven page 
article is supported by two appendices that provide technical details and linked resources. 
 

Being Random 
 

Technically randomness means different things in various fields.  When used as described above it means 
a lack of a pattern and an equal chance of each possible outcome.  It means that a series of random events 
occur in such a way that the next event is not predictable.  Depending on how the random event is caused, 
however, there are probabilities that a certain value will occur.  For example, if we flip a properly made 
coin(1) most people will agree that when the coin lands there will be an equal chance of it showing heads 
or tails.  It is not the purpose of this article to delve into the very deep mathematical techniques of 
defining and evaluating all aspects of randomness.  Rather it is the purpose of this article to explore the 
seldom documented random features of HP calculators.  Just like other features such as SOLVE, MOD, 
and a Calendar, HP has implemented random features that are exceptional and mathematically rigorous.  
The ability to produce high quality random options suitable for all of the situations described in the 
Introduction is a typical hall mark of HP calculators. 
 

Sources of Randomness 
 

There are two sources of randomness.  (1) A physical process such as rolling die or, (2) a mathematical 
operation such as that implemented in a computer or HP calculator.  In its most basic form a series of 
numbers are generated mathematically by various processes such as those previously mentioned.  When 
computers are involved the processing of numbers is very fast and vast quantities of data may be used for 
a particular application.  In certain modeling situations billions of random numbers may be required and 
that is beyond the capability of our hand held calculators.  The discussion of random numbers is a vast 
subject and the available articles, books, programs and research papers would keep any teacher or student 
busy for many years.  When vast numbers of high quality true random numbers are required computers 
are teamed up with electronic devices such as a noisy resistor, noisy semiconductor, atmospheric noise, or 
detecting a radioactive decay process(2). 
 

Randomness Testing 
 

Testing for true randomness is a challenging task(3) and is usually a college level topic that will not be  
covered here.  One of the simplest tests is a tally of all the numbers – usually digits – and noting their  
frequency.  For true randomness the distribution of the digits, and 
their odd-evenness should be uniform(4).  There are dozens of 
(statistical) tests that may be performed and looking for repeating 
sequences is but one of them.  While these tests involve advanced 
mathematics and a computer there is one simple test that a 
graphing calculator may easily perform to test for randomness.  
Use the generated numbers two at a time as x-y coordinate values, 
scale them, and plot a point on the calculator screen. The screen 
should look similar to Fig. 1 which shows a 131 x 80 pixel plot  

 

 
http://www.random.org/ 

    Fig. 1 – 10,480 random pairs plotted. 
(HP50g display) of random points.  It is a simple task to examine the screen pattern as having no pattern. 
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If the numbers are not random vertical, horizontal, or diagonal streaks or other patterns will be obvious.  
Fig. 2 is from the first link in note 2.  It illustrates a more complex graphical way of comparing a batch of 
1,200 random numbers.  Adding a third number to represent color greatly increases the information that 
may be derived in terms of the desired lack of patterns. 
 

 
 

Random or Pseudorandom? 
 

Using a computer or calculator program to generate random numbers is by definition not considered 
possible because the same numbers may be generated by another machine using the same program and 
therefore is predictable.  A fundamental part of being random is the inability to predict the next values in a 
series.  It is possible to program a very well tested(3) algorithm that will produce a very long series of 
random numbers.  The “trick” is to jump into the series at some known point - a value which may be kept 
secret or itself being random.  These programs are called pseudorandom number generators (PRNG) 
compared to true random number generators(3) (TRNG) based on a physical process.  All HP calculators 
use a PRNG.  The point where you start the series is called the seed.  See additional details in the next 
section and Appendix A.  Fig. 3 shows examples of TRNG’s.  Opposite side spot counts equal seven. 
 

    
 

Fig. 3 – L to R Conventional dice, rounded corners in various colors, game dice with special markings, and 
assorted non-standard sided dice which are often 8, 10, 16, and 20 sided for various applications of a TRNG.  
 

HP Calculator PRNGs 
 

Table 1 shows the current calculators offered by HP.  Models that feature randomness are indicated by *. 
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Circa late 1980’s and with the HP 28C on June 1st 1986, HP revised their PRNG algorithm to improve it.  
All current machines will have the values shown in table 2 using the latest version of the algorithm except 
for the remanufactured HP-15C which uses a different (earlier) algorithm. 
 
As an illustration of the limited information related to this algorithm and its application, the text of the 
HP33s “user’s manual” is reproduced below.  This example is as complete as it gets in terms of the  
descriptions of the two randomness functions typically called RAND and SEED.  The indication of its 
quality is given with its Donald Knuth reference. 
 

Table 1 – 2013 HP Calculator Products – 24 Total 
 

# Financial Calculators Scientific & Graphing Home & Office 
1 HP 10bII HP 10s HP CalcPad 100 
2 HP 10bII+* HP-15C Limited Edition* HP CalcPad 200 
3 HP 20b * HP 33s* OfficeCalc 100 
4 HP 30b* HP 35s* OfficeCalc 200 
5 HP-12C HP 39gs* OfficeCalc 300 
6 HP-12C 30th Anniversary HP 39gII* PrintCalc 100 
7 HP-17bII+ HP 40gs* QuickCalc 
8  HP 48gII*  
9  HP 50g*  

10  SmartCalc HP 300s  
 5 of 7 = 71% programmable 8 of 10 = 80% programmable None programmable 

 

Notes:  Programmable calculators are in blue.  Underlined models are at or near end of life. 
                         * Machines that have a PRNG function.  
 

Table 2 – Random Sequences for Current Models (Seed =  ) 
 

# Machine Random #1 Random #2 Random #3 
1 HP 17bII+(a) 0.521548989463 0.0593946804209 0.666602695109 
2 HP 10bII+ (a) 0.521548989463 0.0593946804209 0.666602695109 
 HP 20b (b) 0.521548989463 0.0593946804209 0.666602695109 

3 HP30b (a) 0.521548989463 0.0593946804209 0.666602695109 
4 HP-15C LE(a,c) 0.635762643 0.5681838663 0.6749247476 
5 HP33s 0.521548989463 0.0593946804210(d) 0.666602695109 
6 HP35s 0.521548989463 0.0593946804210(d) 0.666602695109 
7 HP39gs 0.521548989463 0.0593946804209 0.666602695109 
8 HP39gII 0.521548989463 0.0593946804209 0.666602695109 
9 HP40gs 0.521548989463 0.0593946804209 0.666602695109 
10 HP48gII 0.521548989463 0.0593946804209 0.666602695109 
 HP50g 0.521548989463 0.0593946804209 0.666602695109 

 

         Notes:  (a) The seed is stored using the keys STO RAND. 
          (b) The HP 20b does not have the ability for the user to store a seed. 
                      (c) Based on original ROMs of HP-15C announced on July 1st 1982. 

(d) Last digit error because of a bug in the implementation of the algorithm wherein the 
     rounded(7) value was used (as with most normal functions) instead of the truncated value. 

 
The HP33s Calculator Random number usage instructions below will serve as an example of the briefness 
of the typical RAND information. 
 
Seed 
To store the number in x as a new seed for the random number generator, press  . 
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Random number generator 
To generate a random number in the range 0  x < 1, press  .  (The number is part of a uniformly–
distributed pseudo–random number sequence.  It passes the spectral test of D. Knuth, The Art of Computer 
Programming, vol. 2, Seminumerical Algorithms, London: Addison Wesley, 1981.) 
 
The RANDOM function uses a seed to generate a random number.  Each random number generated becomes the 
seed for the next random number.  Therefore, a sequence of random numbers can be repeated by starting with the 
same seed. You can store a new seed with the SEED function.  If memory is cleared, the seed is reset to zero.  A 
seed of zero will result in the calculator generating its own seed. 
 
For most applications, especially documented ones, it is most desirable to start with a specified seed for 
testing and so others may repeat and validate your results.  Additional details of the current models 
RAND function may be found in Appendix A. 
 
PRNG and TRNG Applications 
 

The more obvious calculator applications of RAND (as it is usually notated on an HP calculator 
keyboard) are described in the Introduction.  Selected example RAND programs for various HP 
“languages” e.g. Classical RPN: HP-15C, HP35s; ENTRY RPN: HP30b; RPL: HP48gII, HP50g; and 
Pascal like: HP39gII may be found in Appendix B.  Cryptology requires the highest quality random 
numbers and a TRNG is essential.  Bank and Internet transactions are examples.  Simulations and 
research applications that use Monte Carlo(5) methods require billions of high quality random numbers   In 
certain simulations a PRNG may be suitable. 
 
Scaling 
 

HP Calculators produce pseudorandom umbers from 0 to 0.999 999 999 999.  If you want other values 
such as 6 for a die or 52 (both integers) for a deck of cards you must scale the 0.nnn nnn nnn nnn nnn 
PRNG output range to another range.  The general formula to use is: 
 
rand integer (x,y)=(round(rand()*(y-x)))+x  
 
(x represents the minimum and y the maximum integer value). 
 
An example is 1 to 6 for a standard die. 
 
Random 0,0.nnn nnn nnn nnn  = ROUND (RAND * (6-0) + 1) = ROUND 0.nnn nnn nnn nnn  
 
An RPL program to do this is:  << RAND 6 * CEIL >>  where CEIL returns the smallest integer greater 
than or equal to the argument.  Each execution returns a random digit from 1 to 6.  Using  the result of 
102 throws of the die are:  1=17, 2=21, 3=10, 4=15, 5=20, 6=19.  A uniform distribution would be 17 of 
each. 
 

Non-uniform Rand distributions 
 

The output of most random number generators has a uniform distribution but there are applications that 
require that the numbers be distributed non-uniformly(6).  The basic uniformly-distributed random number 
generators play a vital role in generating non-uniformly distributed random numbers. Mapping the (0,1] 
range of a basic uniform random number generator to any other range (A,B] is very easy and uses the 
following equation: 
 
X = A + (B–A) U 
 
The notation (x,y) signifies a range that includes the value of x but very closely approaches y. The 
variable U is the uniform random number in the range (0,1).  The range of 0 to 1 is useful in generating 
non-uniformly distributed random numbers by applying that range to cumulative distribution functions. 
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Since any cumulative distribution function has values that range from 0 to 1, we generate a random 
number in that range and then calculate the value in a non-uniform distribution that has the matching 
cumulative value. Here is a simple example that illustrates the concept. Consider the exponential 
probability distribution function (PDF): 
 
f(x) = λ e- λx for x>0 and λ>0 
 
The cumulative distribution function (CDF) F(x) is: 
 
F(x) = 1 – e-λx 

 
To generate an exponentially distributed random number we use the inverse of the CDF: 
 
x = F-1(U) = ln(1/U) / λ 
 
This method is called the inversion method.  It is a popular one, but not the only method. Table 3 shows a 
set of probability distributions to which we can easily apply the inversion method. 
 

Table 3 – Examples of Simple Probability Distributions 
Where the Inversion Method Can Be Easily Applied 

 

Probability 
 Distribution 

Probability Distribution 
Function 

Cumulative Distribution 
Function 

Inverse CDF 

Weibull a xa-1exp(–xa) ; x > 0, a > 0 1 – exp(–xa) (ln(1/U))1/a 
Logistic 1/(2+ex+e-x) 1/(1+ e-x) ln(U/(1–U)) 
Cauchy 1/(π (1+x2)) ½ + 1/ π arctan(x) tan(π U) 
Pareto a/xa+1 for a>0 and x>1 1 – 1 / xa 1/U1/a 

 

 
Unfortunately Table 3 shows the minority of probability distributions to which the inversion method can 
be easily applied. Other distributions, like the normal distribution, Student-t, Chi-Square, and the Fisher F 
distributions, all require extensive and/or iterative calculations to use the inversion method. For example, 
 
The PDF for the normal distribution is: 
 

 
 
The CDF for the normal distribution is: 
 

   
 
Where erf(x) is the error function.  Calculating the values for this function typically involves a summation 
series.  Solving for x in the above equation, given a uniform random number (as the value for CDF(x)) 
requires an iterative root-seeking process in which each iteration has to calculate one or more values for 
the error function. 
 
In the case of a simple normal distribution (with a mean of 0 and a standard deviation of 1), the PDF is: 
 

 
 
Statisticians have developed a much simpler and non-iterative algorithm to generate standard normally  
distributed random numbers.  The method, which generates pairs of random numbers, uses the following 
algorithm: 
 

1. Generate uniform random numbers U1 and U2. 
2. Calculate Rand1 =  
3. Calculate Rand2 =  
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You can store the value of Rand2 and use it when you want the next normally distributed number. 
Alternately, you can obtain a single random number using the expression (Rand1 + Rand2) mod 1. The 
book Computation Methods in Statistics and Econometrics, by Hishashi Tanizaki offers excellent short 
and easy to read FORTRAN subroutines that generate non-uniform random numbers. Tanizaki uses a 
very clever approach by generating non-uniform random numbers based on the values of other, simpler-
to-calculate, non-uniform random numbers. Thus, the author avoids complicated and CPU-intense 
calculations. 
 
Another approach uses the following rational polynomial approximation to calculate x, the normally 
distributed random number: 
 
x = t – (c0 + c1 t + c2 t2) / (1 + d1 t + d2 t2 + d3 t3) 
 
Where t is defined as: 
 
 

t =    
 
And the constants are c0= 2.515517, c1= 0.802853, c2= 0.010328, d1=1.432788, d2=0.189269, and 
d3=0.001308. 
 
Once you have the standard normal random number x, you can map it onto a general normal distribution 
with a mean µ and standard deviation σ using the following equation to get y: 
 
y = (σ x+ µ) 
 
Statisticians have created similar approximations for the Student-t, Chi-Square, and Fisher F distributions. 
 
It is worth mentioning that the HP 39gII implements functions that generate non-uniformly distributed 
random number for the normal, binomial, Chi-Square, Student-t, Poisson, and Fisher F distributions.  
Tables 4 shows these functions with sample calls. The last argument in each sample call represents a  
uniformly distributed random number in the range of (0,1]. These functions make generating random 
numbers for the above distribution a breeze! 
 

Table 4. The list of functions in the HP 39gII that can 
generate popular non-uniform random numbers 

 
Distribution Example of Function Call 
Normal normald_icdf(0, 1, 0.841344746069) returns 1 
Binomial binomial_icdf(4, 0.5, 0.6875) returns 2 
Chi-Square chisquare_icdf(2, 0.952641075609) returns 6.1 
Fisher F fisher_icdf(5, 5, 0.76748868087) returns 2 
Poisson poisson_icdf(4, 0.238103305554) returns 2 
Student-t student_icdf(3, 0.0246659214813) returns 3.2 

 
 

Observations and Conclusion 
 

The use of randomness is extensive in our high tech society.  Randomness is used for bingo games, lotto 
drawings, coin flipping, dice rolling (for board games) and gambling in places like Las Vegas.  There are 
two sources of randomness.  (1) A physical process such as rolling dice, or (2) a mathematical operation, 
such as that implemented on a computer or HP calculator.  Many HP calculators provide randomness 
features in the form of a pseudorandom number generator, PRNG, – vs. a true random generator, TRNG, 
such as the throwing of dice - and a SEED function.  Unfortunately most calculator manuals do not 
provide very much information on the RAND and SEED/RDZ randomness functions and it is the purpose 
of this article to expand on this information.  All HP calculators with these features made since the late  
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1980’s use the same algorithm as detailed in Appendix A.  HP’s PRND will generate more than enough 
quality random numbers for any calculator program you can run in your lifetime. 
 
 
 
____________________________________________________________________________________ 
Notes for: The Randomness of HP 
 

(1).  The primary assumption is that the coin is homogenous, uniform, throughout.  Another assumption is that the 
coin is symmetrical about a center slice through the coin between the head and the tail sides.  This is not true 
in reality but the raised portions of each side are quite close.  Yet another assumption is that the nervous 
system of a human being is not consistently repeatable in terms of the force and direction of the thumb and 
fingers when making the flip and the distance traveled while turning.  For an additional resource see:  
http://en.wikipedia.org/wiki/Randomness  

 

(2).  For a very readable overview of randomness see an article titled Randomness As A Resource by Brian Hayes 
in American Scientist, July-August 2001, Volume 89, p300.  See and download the article at:  
http://www.americanscientist.org/issues/pub/randomness-as-a-resource  For an excellent source of true 
random numbers (based on atmospheric noise) and other randomness information see: 
http://www.random.org/  If you only visit one randomness website this should be the one. 

 

(3).  The critical issue here is being well tested and documented by multiple team efforts using the best  
testing tools available.  The constants used in the algorithms are critical and once a good algorithm is 
developed it should not be altered because the results will no longer be valid.  HP uses a good quality low 
output algorithm.  Documentation (especially in the User’s Manual) is sparse and this article will  
provide additional information and resources.  See   http://www.random.org/    Especially 
see:http://www.random.org/analysis/  Additional test descriptions may be found at:  
http://en.wikipedia.org/wiki/Diehard_tests   Also see:  http://csrc.nist.gov/groups/ST/toolkit/rng/index.html 

 

(4).  A discussion of using a computer to down load 10,000 digits of  π and counting the distribution of the digits is 
described and illustrated in HP Solve # 25 page 69, Table 5.  Each digit is very well distributed with an 
average of 1,000 occurrences of each digit 1 through 0.  The Odd/Even distribution is not quite so uniform 
with occurrences being 1004/994.  To read the article See:  
http://h20331.www2.hp.com/hpsub/downloads/HP_Calculator_eNL_09_September_2011.pdf  

 

 (5).  An outline of the Monte Carlo process may be found in the Introduction at:  
http://en.wikipedia.org/wiki/Monte_Carlo_method.  

 

(6).  For an excellent discussion of how some of these distributions may be implemented on a calculator see an 
HHC 2011 presentation by Richard Schwartz.  The Power Point version is titled To Deviate Normally (714 
KB).  The Conference paper, 11 pp, is titled Generating Normal Deviates   (145 KB).  The HHC proceedings 
may be obtained at:  http://www.pahhc.org/ppccdrom.htm 

 You may also request copies from Richard J. Nelson:  rjnelsoncf@cox.net  
 

(7)  Bug Hunter Joseph K. Horn explains. “Bottom Line: HP 33s and 35s programs that use random numbers 
cannot be relied upon to obtain precisely the same results as the other HP models that use the same RNG 
engine.  This is critically important if the RNG is re-seeded with one of these different random numbers; in that 
case, the random number sequence in the 33s and 35s will diverge from the other models.” 

 

Example of critical divergence:     11 RDZ RAND RDZ RAND RAND RAND -->   (Note: RDZ is used to store the seed) 
RPL models: 0.975035362027, 0.529463266203, 0.783522353434 
33s & 35s:  0.826166290494, 0.626934236292, 0.213277976998 
As you can see, the obtained sequence is totally different. 

 
 
 
 
 
 

HP Solve # 31 Page 57  STEM Education      Page 7 of 24 

http://en.wikipedia.org/wiki/Randomness
http://www.americanscientist.org/issues/pub/randomness-as-a-resource
http://www.random.org/
http://www.random.org/
http://www.random.org/analysis/
http://en.wikipedia.org/wiki/Diehard_tests
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://h20331.www2.hp.com/hpsub/downloads/HP_Calculator_eNL_09_September_2011.pdf
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://www.pahhc.org/ppccdrom.htm
mailto:rjnelsoncf@cox.net


 
 

Appendix A – HP’s Pseudorandom Number Generator 
 

HP 48 Random Number Generator 
Richard J. Nelson 

 
The following discussion of the HP 48 Pseudorandom number generator is based on postings made by 
John H. Meyers on May 28, 1997 to the Newsgroups: comp.sys.hp48(A1).  John disassembled the ROM 
code to better understand how the algorithm works.  This PRNG is used on all HP calculators since the 
introduction of the RPL machines in the late 1980’s.  See Table 2 in the article text and Note (7) above. 
 
The process used by the HP 48 to generate “random” numbers is one that has been tested by some of the 
best minds in the field of mathematics and it is well known for its mathematical properties of randomness.  
These programs are known as pseudorandom number generators and they have many uses in games, 
simulations, and modeling.  An important aspect of pseudorandom number generators is being able to 
repeat the sequence of random numbers. 
 
Most random number generators start with a number called the seed and apply a mathematical process to 
the seed value.  The result is the generator output which also serves as the next value for the seed.  Each 
random number is the result of the previous number.  If 100 numbers are generated with a given seed the 
same sequence will be generated if the same seed is used again at the start.  This aspect of random number 
generators is important for experiments, which must be repeated by others for verification. 
 
A major concern is the non-repeating length of the random number sequence — cycle length.  If the same 
value of the initial seed is used by the random number generator, the sequence will repeat.  The non-
repeating sequence length must be many times longer than the number of RNs needed to complete the 
task at hand.  The HP 48 random number generator has a sequence length of 50,000,000,000,000 (5E13).   
 
The following program generates 200 random numbers on the stack in one second.  << 1 200  START  
RAND  NEXT  >>.  This program will run on a fast (3.7 Mhz.) HP 48 for more than 7,922 years before 
the cycle repeats.   This is certainly more than adequate for any HP handheld calculator program.  Today’s 
much faster models (HP38gII) are 20 times faster and you will only have 396 years of continuous non-
repeating random numbers. 
 
The second command related to random numbers on the HP 48 is RDZ.  This command accepts the level 
one value and stores it as the RAND seed.  A common seed is generated by taking the reciprocal of ‘e’ 
with the key sequence:  1 e^x  1/x.  Add these three commands at the beginning of the program for 
repeatable results.  The seed used for testing the machines in Table 2 of the current machines is  = 
2.2360679775. (2.23606797749979) 
 
If the machine is powered up for the first time or you use zero as the seed the system sets the seed value to 
999,500,333,083,533.  The HP 48 uses 15 digit arithmetic internally and truncates the answer to 12 digits.  
If you are interested in random number generators here are four good sources. 
 

 1.  “Semi-Numerical Algorithms”, Volume 1, The Art of Computer Programming,  Addison  
                  Wesley,  1969, by Donald E. Knuth.  See Volume 2 page 9. 
 2.  Numerical Recipes in C by Press; Teukolsky, Vettering, & Flamery; Cambridge University  
                 Press.  See Chapter seven. 
 3.  HP 48 Goodies Disk  No. 9 (#GD9) See Postings Directory, text file RAND.DOC. 
 4.  PPC ROM User’s Manual .  See RN routine on page 380 and GN routine on page 176. 
 

Technically the HP random number generator is described as a multiplicative linear congruential 
generator.  The equation (used by the HP 28C and all following models) is: 
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 Xn+1 = (a * Xn + c )   mod m  Where:          Xn+1 = next random number  
          a = 2,851,130,928,467. 
       Xn = seed or previous random number. 
          c =  0   
                                                    mod = modulo function. 
         m = 1E15. 
Choosing a seed 
 

The more digits you use for the seed the better.  Rather than keying in a 12 digit number it is more 
convenient to use a function to generate the digits.  A second consideration for the longest cycle is a seed 
that is not divisible by two (it should be odd) or five.  The output is not “ruined” but it will not strictly 
conform to the randomness tests if it is not an “odd” seed for a period of 5E13 instead of 5E15.  One way 
to verify that these conditions are met is to test the number.  ‘TS1’, Test Seed version 1 tests an integer 
number not to be divisible by 2 or 5.  It returns a one if the number is a “good” number. 
 
‘TS1’  <<  DUP  2  MOD  SWAP  5  MOD  AND  >> 
 

27.5 Bytes, #EA6h.  Timing: 123456789012 ⇒ 0 in 9.01_ms., 123456789011 ⇒ 1 in 8.89_ms. 
 
Here is how ‘TS1’ works.  ‘TS1’ is similar to the built-in tests in that it returns a one for pass, or a zero 
for fail.  If the input integer is NOT divisible by 2 or 5 it is a “good” number and the result is a one.  A 
copy of the input number, n, is made with DUP.  If n is evenly divisible by 2 the result of 2 MOD is 0, 
otherwise it is 1.  The result of the first MOD “test” is Swapped with n and a similar “test” is made with  5  
MOD.  A zero results if n is evenly divisible by five and one through four otherwise.  At this point level 
two may be either zero or one (non-zero) and level one may be either zero or non-zero.  The logic 
operator  AND  compares level two with level one according to the  “rules” in the table below. 
 

AND Truth Table 
Input Input Output 

Level 2 Level 1 AND 
0 0  0  
0 1 0 
1 0 0 
1 1 1 

 
The one in the truth table is any non-zero real according to the rules defined in the Advanced User’s 
Reference Manual, AUR.  ’TS1’ is great for integers, but fails for decimal numbers. 0.88 is divisible by 
two yet it passes the ‘TS1’ test.  The reason for this is MOD only works for integers.  Let’s solve this 
problem by converting any number, decimal or mixed, into an integer with ‘TS2’. 
 
‘TS2’  <<  ABS  MANT  DUP  →STR  3  OVER  SIZE  SUB  SIZE  ALOG  *  >> 
 

37.5 Bytes, #58C0h.  Timing: 0.123456789012 ⇒1234567890012 in 24.0_ms. 
 
Here is how ‘TS2’ works.  ABS insures that only positive numbers are used.  Negative numbers may 
result from some math functions.  MANT returns the mantissa of the number in the form N.N …N.  The 
test input 0.123456789012 becomes 1.23456789012.  The goal is to determine how many places, digits, 
there are after the decimal point.  A copy is made with DUP and the level one number is made a string 
with →STR.  The first position in the string is followed by a decimal point.  That means that we want the 
third through the total, SIZE, number of characters and OVER makes a copy of the string, SIZE gives the 
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total, and SUB returns the desired characters.  Another SIZE provides their number and ALOG makes a 
power of ten equal to the SIZE value.  The last command multiplies the MANT number by this number 
effectively moving the decimal point to the far right converting the decimal number into an integer. 
 
Any input to ‘TS2’ is converted into an integer.  ‘TS1’ tests it for meeting the non-divisible by 2 or 5 rule.  
The last task is to convert a “good” number back to a decimal number to use as a seed.  ‘TS3’ performs 
this task.  Any number may be used as a seed.  It does not have to be a decimal number.  Let's explore the 
inverse of ‘TS2’ for “educational/programming” purposes. 
 
‘TS3’  <<  MANT  10  /  >>            25.5 Bytes,  #4DEAh.  123456789011 ⇒ 0.123456789011 in 6.5_ms. 
 
Does RAND generate numbers that are not recommended as initial seeds?  We now have the tools to test 
numbers so let’s test the RAND output just for fun. 
 
‘TS4’   <<   DO  RAND  DUP  ‘SEED’  STO  TS2  12OO  .05  BEEP  UNTIL  TS1  END  >> 
 

74.0 Bytes,  #32beh.     NOTE:  Commands not native to the HP 48 are in bold. 
 

‘TS4’ has great entertainment value.  It produces a ‘chirp’ for each RAND number generated.  Our ‘TS1’ 
test is applied and if it is a good seed the program ends with the RAND value stored in a variable called 
‘SEED’.  The program generates another random number if the first one is not acceptable.  It will 
continue to ‘chirp’ until a good one is found.  I have heard (actually the program was modified to count 
them) eleven consecutive ‘chirps’ on one occasion.  The chirps is NOT an indication of a PRNG failure. 
 
Here is how ‘TS4’ works.  A  DO ...UNTIL ... END loop structure is used.  The DO clause is the 
commands between DO and UNTIL.  The commands between UNTIL and END is the test clause.  The 
first command in the DO clause is RAND.  A copy is made with DUP with one of the RAND numbers 
stored in ‘SEED’.  TS2 converts the decimal number to an integer and a 1,200 hertz tone of 0.05 seconds 
duration is sounded with BEEP.  The UNTIL clause is simply our test program TS1.  It returns a one if 
the number is acceptable.  If this is the case the END is executed and the program is finished.  If TS1 
produces a zero, the DO clause is executed again.  The DO loop repeats the DO clause until the UNTIL 
clause tests true. 
 
I mentioned that I “counted” the number of ‘chirps’.  This is done with ‘TS5’ with the addition of the 
three underlined commands at the beginning.  The operation of the program is similar to ‘TS4’. 
 
‘TS5’   <<  0  DO  1  +  RAND  DUP  ‘SEED’  STO  TS2  12OO  .05  BEEP  UNTIL  TS1  END  >> 
 

81.5 Bytes,  #145Ch.     NOTE:  Commands not native to the HP 48 are in bold. 
 
You may leave out 0, 1 + 1200 .05 and BEEP and use the modified program,  
 
‘TS6’, as a create-a-seed-and-record-it program.  Add an RDZ command after the END if you call this 
program as part of your main program. 
 
‘TS6’   <<   DO  RAND  DUP  ‘SEED’  STO  TS2  UNTIL  TS1  END  (RDZ optional)  >> 
 

50.5 Bytes,  #E57Fh.    NOTE:  Commands not native to the HP 48 are in bold. 
 
It should be kept in mind that the basis for RAND is 15 digits internally and that the 12 digits we see are  
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truncated from the internal 15 and that they are NOT necessarily an accurate indication that the PRNG is 
not working properly.  These test programs are intended as educational programming/test examples. 
 
We now have the basic tools to create and store a seed for repeatability purposes.  The above programs 
illustrate the modularity nature of the HP 48 programming language.  It is easy to write and test short 
small modules and call them as needed.  This also makes modifications easy.  You may use a module just 
as you do a built-in command as illustrated above.  Of course, you may key in the respective code into the 
program to make it a complete stand-alone program if you wish.  The interactive stack makes assembling 
programs this way easy, and the amount of re-keying is kept to a minimum.  These programs are provided 
as an educational exercise for those readers wanting to explore programming and RAND. 
 
After many users have researched the performance of the HP random number generator it is not surprising 
to find that HP has done an excellent job in the programming of the PRNG.  The ONLY requirement the 
user has for using RDZ and selecting a seed is that it be as many decimal digits as possible.  All other 
requirements are automatically taken care of by the algorithm.  ANY 12 digit number will suffice with an 
exponent up to 99 maximum.  The not divisible by 2 or 5 is taken care of by internally shifting the 
exponent so it always ends in one. e.g. 362 becomes 621, 539 becomes 391, 045 becomes 451.  Of course 
you cannot know this unless you examine the internal ROM programming.  
 
Another aspect of the HP 48 RNG described by John  H. Meyers is the details of storing zero as a seed.  
The HP 48G Series User’s Guide  mentions that 0 RDZ sets the seed according to the system time.  The 
TICKS counter uses five nibbles as a real time counter and the over flow is “counted” to an eight nibble 
register.  The rightmost five HEX digits are taken from the real time clock with the leftmost eight digits 
taken from memory.  The sequence, 12  →TIME  0  RDZ  RAND,  however, will not produce consistent 
results.  The reasons for this are unclear.  The intentional system clock jitter(A2) is likely the major cause.  
If you run the program 100 times putting the results into a list and sorting them you will find that there are 
a limited number of variations - usually less than a dozen with the majority of them being one or two 
values. 
 
 __________________________________________________________________________________ 
Notes for The Randomness of HP Appendix A 
 

(A1)  See http://www.hpcalc.org/search.php?query=John+Meyers+random+Numbers  for additional details. 
 

(A2)  The HP48 system clock is not a smooth running clock.  In order to ensure that the calculator’s digital signals 
do not cause radio frequency interference the system clock has a small amount of jitter introduced. This jitter 
causes a small ambiguity in precise time measurements based on it and the resolution of TICKS (8192 TICKS 
per second, 122 microseconds) is enough to detect it. 
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Appendix B – Selected PRNG Programs 
 
These programs illustrate the flipping of a coin, rolling a pair of dice, dealing a deck of cards (selection 
without replacement) the use of scaling, and other assorted RAND applications. 
 

Selected Random Number Generators for the HP-41 (Classical RPNB1)  
 

Also see these at: Jean-Marc Baillard’s excellent website at  http://hp41programs.yolasite.com  which 
contains a sizeable collection of classical RPN programs for Analytical Methods, Arithmetic, Astronomy, 
Calendars, Complex & Hypercomplex Numbers, Differentiation & Integration, The Earth, Geometry, 
Matrices, Polynomials & Rational Functions, special Functions, Spectral Analysis, Functions of Several 
Variables, Statistics (random numbers) , Physics, Games, Miscellaneous, and Links to other program 
collections. 
 
Five pseudo random number generators are listed here.  "RNG1" "RNG2" "RNG3" work on every HP-41.  
"RNG4" requires a Time-Module. Finally, the last program is an attempt to play (win?) the lottery. 
 
Program#1  
 

A well known RNG is given by the formula:  xn+1 = FRC (9821 xn + 0.211327) which provides 1 million 
random numbers. The following program gives 1,000,000 random numbers r  ( 0 <= r < 1 ). The formula  
xn+1 = FRC ( 98 xn + 0.236067977 ) is used.  
The coefficient 98 = 43,046,721 may be replaced by  a   where  a = 1 ( mod 20 )  
                    and  0.236067977  may be replaced by  b  where   b*109 is not divisible by 2 or 5.  
 

01  LBL "RNG1"  
02  9  
03  ENTER^  
04  ENTER^  
05  R^  

06  * 
07  FRC              
08  *  
09  FRC  
10  * 

11  FRC  
12  * 
13  FRC              
14  *  
15  FRC 

16  * 
17  FRC  
18  * 
19  FRC              
20  *  

21  FRC  
22  5  
23  SQRT 
24  + 
25  FRC  

26  END  
 

 

( 35 bytes / SIZE 001 )  
 
      
STACK 

       
INPUTS 

     
OUTPUTS 

           X             xn           xn+1 
 
Example:  
  0.2   XEQ "RNG1"  yields  0.436067977  
                                     R/S    0.779021394   ... etc ...  
 

Program#2  
 

"RNG2" provides 9,999,999,996  random numbers with the formula:  xn+1 = ( 1059 xn ) MOD p   where p 
= 9,999,999,967 is the greatest prime < 1010 .   xn are integers between 0 and p (exclusive) which are then 
divided by p to be reduced to a number between 0 and 1.  This routine works well because the MOD 
function gives exact results even when the operands are greater than 1010.   Actually, the exponent 59 may 
be replaced by any integer m provided m is relatively prime to p-1 = 2*3*11*457*331543,  but I don't 
know what is the best choice.  Unlike "RNG1" and other routines based upon the same type of formulae, 
the least significant digits don't go through any cycle of ten, one hundred and so on.  Register R00 is used  
to store the different  xn integers. 
 

 01  LBL "RNG2"  
 02  RCL 00  
 03   E59  

 04  *  
 05  10 
06  10^X   

07  33  
08  - 
09  MOD 

10  STO 00 
11  LASTX  
12  / 

13  END 
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 ( 26 bytes / SIZE 001 )  
 
      
STACK 

       
INPUTS 

     
OUTPUTS 

           X             /       0 < r < 1 
 
Example:  
    1  STO 00  
        XEQ "RNG2" gives  0.3129146797   (and R00 = 3129146787 = 1059 (mod p))  
         R/S   gives 0.6904570204   (R00 = 690457018 ) ... etc ...  
 
Actually if p is a prime,  ( Z/pZ-{0} ; * ) is a group and if a is an integer,  the number of distinct elements 
in the subset   { 1 ; a ; a2 ; ....... ; ak ; .... } ( mod p )   divides  p-1  
If  p-1 is the smallest positive integer q such that aq = 1 ( mod p ) , then the sequence   a ; a2 ; ....... ; ak ; 
.... ; ap-1 ( mod p ) is a permutation of  1 ; 2 ; ...... ; p-1  
In particular, if  p = 2p' + 1  where p' is also a prime, and if ap' is not equal to 1 ( mod p )  then  a  satisfies 
the required property.  
 
For instance,  p = 7,841,296,787 = 2*3,920,648,393 + 1              7,841,296,787 and 3,920,648,393 are 
primes and  -1024 = 4,851,307,369  ( mod p ) satisfies  (-1024)p' = -1  therefore the routine:  
 

  E24  
  *  
  CHS  
  7841296787  
  MOD 
 

gives 7,841,296,786  random integers.  These ideas may be used to create your own RNG.  
 

Program#3  
 

The following algorithm is given by Clifford Pickover in "Keys to Infinity" (John Wiley & Sons)  ISBN 
0-471-11857-5  
 

01  LBL “RNG3"  
02  LN  

03   E2  
04  *  

05  1  
06  MOD 

07  END 

   
( 17 bytes / SIZE 001 )  
 
 1st 3 Ex .25x 50% 

      
STACK 

       
INPUTS 

     
OUTPUTS 

           X             xn           xn+1 
   
Example:  
    0.1   XEQ "RNG3" produces  0.74149070  
             R/S   gives 0.09073404  ... etc ...  
 

Program#4  
 

01  LBL "RNG4"  
02  DATE  
03  TIME  

04  +  
05   E49  
06  * 

07  PI  
08  MOD  
09  LN1+X 

10  R-D  
11  FRC  
12  END 

 
( 25 bytes / SIZE 000 )  
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STACK 

       
INPUTS 

     
OUTPUTS 

           X             /       0 < r < 1 
   
I cannot give any example since the result depends on the instant you press R/S  
   
Program#5 - Winning the Lottery?  
   
If you need, for instance, 7 integers between 1 and 49 , you can use 7 random numbers between 0 and 1,  
  multiply them by 49 , add 1 and take the integer part of the result.  The small routine hereafter is another 
possibility, if you accept to calculate the integer part in your mind:  
   

 01  LBL "$$$"  
 02  R-D  

 03  49  
 04  MOD 

05  1  
 06  + 

 07  END 

   
( 16 bytes / SIZE 000 )  
   
      
STACK 

       
INPUTS 

     
OUTPUTS 

           X             r      0 < N < 50 
 
Example:  
   41  XEQ "$$$"  yields  47.1270  
         R/S  6.1759, R/S  1.8535, R/S  43.1567,  R/S  23.6963,  R/S  35.6962  R/S  37.2418          
         suggesting     47-06-11-43-23-35-37  
 

Notes:  
1- I'm not a statistician and I can't assure all these RNGs would stand up to sophisticated tests, but one 

may use his imagination in devising variations. 
  

2- If you win one million dollars thanks to one of these programs, I accept to share the jackpot...  

 

Selected RPL RAND Application Programs (HP48/49/50) 
 
More meaningful random passwords  (Wlodek Meir-Jedrzejowicz) 
 

Many people like to have a random password generator rather than make up their own. The best advice is 
to combine upper case, lower case, digits and special symbols, but that can make for very unmemorable  
 
passwords.  It is often enough to use a string of 7 or more lower case letters - at least those make up  
something that can be related as a foreign word!  The following program generates a string of 7 lower 
case characters - change 7 to another number if you wish. It uses RAND 26 * 96.5 to generate the random 
letter between a and z. 96.5 is used instead of 97 because CHR rounds to the nearest number. Totally 
random letter combinations contain too few vowels, and too many letters from the end of the alphabet, so 
I add SQ after RAND to increase the likelihood of the early letters, which contain a higher proportion of 
vowels. This makes for a higher proportion of readable words, though with too many "a"s in them.  Run 
the program repeatedly until you find a password you like! 
 
‘RPAS’  <<  ""  1  7  START  RAND  SQ  26  *  96. 5  +  CHR  +  NEXT  >> 
 

13 commands, 61 bytes, F0B2h.  Timing: with π RDZ, ⇒ “htabbst” in 176ms.  Following: “aaekkga”, “sjatauz”. 
 
HP Solve # 31 Page 64  STEM Education      Page 14 of 24 



How many random numbers are required (summed) to be ≥ to n?  (Detlef Müller) 
 This is an unusual application of START…STEP.  Key n and execute ‘NRN’. 
 
‘NRN’  <<  0  0  ROT  START  1  +  RAND  STEP  >> 

8 commands,  30.0 Bytes,  # 43DCh. 
 
Reminder.  In order to get the same results you must first store a value in RDZ.  If RDZ starts with the  
the results for n = 7 are.  17, 14, 13, 15, 16, 15, 11 . . .  
 
Dealing a deck of cards 
 

Drawing a BINGO(B2) number or dealing a deck of cards(B3) are examples of using random numbers as selection 
without replacement.  A fixed number of random numbers ordered randomly and used.  This problem may be 
solved in many ways depending on how it will be used.  Breaking the program into parts allows the reader/student 
to better understand how the programs work.  Four HP 48 programs are used as described in Table B0. 
 

Table B0 – RPL Card Dealing Program Statistics 
 

Name Description Size Calls Chk Sum[a] 

DEAL Deals a card. 59.5 B DECK, & 
CRDID # 6004h 

CRDID Identifies/displays the card with value & suit as a text string. 219 B — # 31BDh 

DECK A list of randomly ordered card numbers (1 – 13 is Spades, 14 – 
26 is Hearts, 27 – 39 is Diamonds, 40 – 51 is clubs). 

479 B — #3FA3h 

MAKE Creates a list of randomly ordered card numbers 1 to 52. 77.5 B — # 47B8h 
SEED Makes repeatable deck, not required, only used for testing. 17.5 B — # 7CF0h 

 

         Note:  Check sum is for program only.  The deck is based on a seed of .  Variables not native to the  
         HP 48 are in bold. 
 
‘DEAL’   <<  DECK HEAD LASTARG TAIL ‘DECK’ STO CRDID MEM DROP >> 
 

Note MEM DROP is not required unless memory is inadequate.  This sequence clears  
LASTARG, etc. 

 
‘CRDID’  << { ACD DUCE TREY FOUR FIVE SIX SEVEN EIGHT NINE TEN JACK QUEEN  
                       KING } OVER 1 – 13 MOD 1 + GET “ of ” + { Spades Hearts Diamonds Clubs }  

           ROT 13 / CEIL GET + >> 
 

Note that the text is entered as a name which is automatically converted to a string when it is 
concatenated with the “ of ” text string. 

 
‘DECK’   { 17 46 37 24 36 21 41 47 23 52 44 49 32 39 7 19 1 22 12 28 9 5 26 40 34 14 10 38 25 13  
                  2 48 11 29 29 31 42 43 8 27 35 45 15 18 39 33 6 34 51 16 59 }  Note: SEED, (RDZ) IS . 
 
‘MAKE’  <<  1 52 FOR n n DUP RAND * CEIL ROLLD NEXT 52 →LIST ‘DECK’ STO >> 
 
‘SEED’  << 5 √ RDZ  >>                              
 
If all 52 cards are delt and 
the output is put into a list 
of text strings the list will 
be 1,006 bytes with a 
check sum of # 51C2h, 

 
 

Fig B1 – 1st three cards dealt.  Seed = . 
 

 

Fig. B2 – Error with 53rd card dealt. 
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For additional details request copies of the documents in notes B2 and B3 from rjnelsoncf@cox.net 
 

Selected Pascal like RAND programs for the HP 39gII 
 

Namir Shammas 
Three HP 39gII listings for: 
 

1. A program that simulates tossing a fair coin. 
2. A program that simulates tossing a pair of dice. 
3. A program that simulates shuffling a deck of cards and drawing cards from that deck. 

 

The Coin Tossing Program 
Table B1 shows the listing for the coin tossing program. The program calls the function RANDOM(0,1) 
to generate a random number between 0 and 1. The program passes the random number to function 
ROUND to round that value to either 0 or 1. Based on the result, the program COIN returns the text 
HEADS or TAILS. 

Table B1 – HP 39gII Program for Flipping a Coin 
 

Statement Comment 
EXPORT COIN()  
BEGIN  
 IF ROUND(RANDOM(0,1),0)==0 THEN 
 

Generate a random number between 0 and 1, and 
round it to either 0 or 1. Test if the result is 0. 

  RETURN “TAILS”; If the result is zero, return Tails 
ELSE  
    RETURN “HEADS”; Otherwise, return Heads. 
END;  
END;  

 

 

Figure B1 shows sample sessions with the function COIN. The output is the result of executing the 
function COIN multiple times. 
 

 
 

Figure B1. Sample sessions with program COIN. 
The Dice Tossing Program 
 

Table B2 shows the listing of a program that generates the result of rolling a pair of dice.  To calculate the 
value of each die, the program uses the expression RANDOM(1,6) rounded to 0 decimals. If you want to 
change the program to emulate playing with eight-face dice, then use RANDOM(1,8) in each of the two 
assignment statements. 
 

Table B2 – HP 39gII Program for Throwing Dice 
 

Statement Comment 
EXPORT DICE()  
BEGIN  
  LOCAL d1,d2;  
  d1:=ROUND(RANDOM(1,6),0); Simulate rolling the first die. 
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Statement Comment 
  d2:=ROUND(RANDOM(1,6),0); Simulate rolling the second die. 
  RETURN CONCAT(d1,d2); Return a list of the two dice. 
END;  

 
Figure B2 shows sample sessions with the function DICE.  The output is the result of executing the 
function DICE multiple times. 
 

 
 

Figure B2. Sample sessions with program DICE. 
 

Now let’s look at another version of the dice throwing program—one that throws loaded dice. The next 
program DICE2 is a function that heavily favors the number 6. Table B3 shows the source code for 
function DICE2. The program generates values for the dice using RANDOM(1,8) and stores them in 
variables d1 and d2. The function DICE2 examines the values in d1 and d2 to determine if they exceed 6. 
If so, the function assigns 6 to either variables. This scheme gives each of the faces 1 through 5 a 12.5% 
chance (down from 16.67% for a fair die), while handing the face 6 a whopping 37.5% chance! If you 
replace RANDOM(1,8) with RANDOM(1,10) in the program, the face 6 will have a 50% chance against 
a 10% chance for each of the other die faces. 
 

Table B3 – The cheater’s Dice program 
 

Statement Comment 
EXPORT DICE2()  
BEGIN  
  LOCAL d1,d2;  
  d1:=ROUND(RANDOM(1,8),0); Simulate rolling the first die. 
  IF d1>6 THEN If the value of d1 exceeds 6, set it to 6. 
    d1:=6;  
  END;  
  d2:=ROUND(RANDOM(1,8),0); Simulate rolling the second die. 
  IF d2>6 THEN If the value of d2 exceeds 6, set it to 6. 
    d2:=6;  
  END;  
  RETURN CONCAT(d1,d2); Return a list of the two dice. 
END;  

 

Figure B3 shows a sample output from the function DICE2. Notice how many 6s appear! 
 

 
 

Figure B3. Sample sessions with program DICE2. 
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The Deck of Cards Program 
Unlike the first three programs that are short and simple, the next set of programs are more elaborate. They perform 
the following tasks: 
 

• Initialize a deck of cards. 
• Shuffle the deck of cards. 
• Draw a card out of the deck. 

 

Initializing the Deck 
Table B4 shows the listing for the InitDOC program that initializes the deck of cards. The first few statements in 
the listing export the following variables: 
 

• The matrix cards which has one row and 52 columns. This matrix stores the numeric codes that represents 
the cards in the deck. 

• The variable numCards stores the number of cards in the deck. 
• The variable setNames stores a list of card face names. 
• The variable cardNames stores a list of card names. 
• The variable stackHeight stores the current number of available cards to draw. 

 

The exported matrix, cards, is a single-row matrix with 53 columns. To examine its contents at any time 
between function calls, copy the data in that matrix into one of the ten global matrices. Then use the 
 

Table B4 – The Card Initialization Program 
 

Statement Comment 
EXPORT cards,numCards; Export variables used by the other 

related functions. 
EXPORT setNames, cardNames;  
EXPORT stackHeight;    
EXPORT InitDOC()  
BEGIN  
  LOCAL i,j,k;  
  numCards:=4*13; Calculate the number of cards in the 

deck. 
  cards:=MAKEMAT(0,1,numCards); Create the row of data that stores the 

numeric codes for the cards. 
  k:=0;  
  FOR i FROM 1 TO 4 DO  
    FOR j FROM 1 TO 13 DO  
      k:=k+1;  
      cards(1,k):=100*i+j; Store the numeric codes of the cards in 

matrix cards. 
    END;  
  END;  
setNames:=CONCAT("Diamonds","Clubs"," 
Hearts","Spades"); 

Initialize the names of the sets of cards. 

  
cardNames:=CONCAT("Ace","2","3","4","5","6
","7"); 

Initialize the names of the cards. 

  
cardNames:=CONCAT(cardNames,"8","9","10"
,"Jack","Queen", "King"); 

 

  RETURN "DECK INITIALIZED";- Return affirmation message 
END;  
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matrix editor to view the value in the global matrix. Table B5 shows the ranges of values used with each 
face. 
 

Table B5– The Numeric Codes for the Cards 
 

Range Meaning 
101 to 113 Ace of diamonds, 2 of diamonds, …, queen of diamonds, and king of diamonds. 
201 to 213 Ace of clubs, 2 of clubs, …, queen of clubs, and king of clubs. 
301 to 313 Ace of hearts, 2 of hearts, …, queen of hearts, and king of hearts. 
401 to 413 Ace of spades, 2 of spades, …, queen of spades, and king of spades. 

 

Shuffling the Cards 
 

This section presents two functions that differently shuffle the deck of cards. The first function, SHUFCARDS, 
shuffles the cards, computer style, as if they were an array of integers. The basic algorithm performs an in-place 
shuffling of cards (treated as array of integers). The leading array elements (or rows of the matrix cards) represent 
the cards TO BE shuffled. The trailing array elements represent the cards THAT WERE shuffled. Initially, the 
number of the cards to be shuffled is 52 and the number of shuffled cards is 0. The function selects an element in 
the range of 1 to 52 and swaps that element with the  
 
last card. Now there are 51 cards to shuffle and one shuffle card. The function selects an element in the range of 1 
to 51 and swaps that element with the second-from-last card (at index 51). The third pass selects a card in the range 
of 1 to 50, and so on. 
 

Table B6 shows the listing of function SHUFCARDS. 
 

Table B6– The listing for the SHUFCARDS Program 
 

Statement Comment 
EXPORT SHUFCARDS()  
BEGIN  
  
  LOCAL nc,nc2,i,j,k,temp;  
    
  nc:=numCards; Set nc to be the initial number of cards to be shuffled. 
  nc2:=0; Set nc2 to be the initial number of shuffled cards. 
  WHILE nc>1 DO Iterate while there are 2 or more cards to shuffle. 
    i:=ROUND(RANDOM(1,nc),0); Select a card in the range of 1 to nc. 
    j:=numCards-nc2; Store the index of the next shuffled card. 
    temp:=cards(1,j); Swap the shuffled card(1,i) with card(1,j). 
    cards(1,j):=cards(1,i);  
    cards(1,i):=temp;  
    nc2:=nc2+1; Increment the number of shuffled cards. 
    nc:=nc-1; Decrement the number of cards to be shuffled  
  END;  
  stackHeight:=numCards; Initialize the number of available cards to draw. 
  RETURN "DECK SHUFFLED";  
END;  

 

It is also possible to shuffle the arrays of cards by repeatedly selecting two cards at random and then 
swapping them. Here is the algorithm for this approach: 
 

1. For MAX_SHUFFLE times perform the remaining tasks 
2. Select i as a random number between 1 and 52. 
3. Select j as a random number between 1 and 52. 
4. If i and j are different swaps the values at element i and j. 
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The above algorithm is easy to implement but does not guarantee that every card is moved to a new 
random location in the deck. The value of MAX_SHUFFLE should be high enough to ensure a good card 
shuffling. 
 
The second card shuffling program emulates splitting the deck of cards around the middle (between 40% 
to 60% of the number of cards) and then merging the two halves. The function moves the cards from the 
split deck onto another deck of cards, by alternating card selection from each sub-deck. 
 
Table B7 shows the listing of function SPLITCARDS. This function has the parameter numSplits which 
tells the function how many times to split and merge the cards. 
 

Drawing a Card 
Table B8 shows the listing of function GETCARD which returns a card from the shuffled deck. The 
function uses the exported variable stackHeight to determine the next card to draw, if there are cards 
available to draw. The function returns a list containing the face name and the card name. 
 

Table B7– The listing for the SPLITCARDS program 
 

Statement Comment 
EXPORT SPLITCARDS(numSplits)  
BEGIN  
  LOCAL ii,cardsCopy,median;  
  LOCAL i,i1,i2;  
    
  cardsCopy:=MAKEMAT(0,1,numCards);  
    
  FOR ii FROM 1 TO numSplits DO Repeat the shuffling of cards numSplits 

times. 
    FOR i FROM 1 TO numCards DO Make a duplicate card deck. 
      cardsCopy(1,i):=cards(1,i);  
    END;  
    median:=ROUND(RANDOM(0.4*numCards,0.6*numCards),0); Select a median for splitting the card. 
    i:=1; Initialize the indices for copying cards 

from the two sub-decks. 
    i1:=1;  
    i2:=median+1;  
    REPEAT Start merging alternating cards from the 

split deck. 
      IF i1≤median THEN Any more cards from the first sub-deck 

to merge? 
        cards(1,i):=cardsCopy(1,i1); Copy the card to the merged deck. 
        i1:=i1+1;  
        i:=i+1;  
      END;  
      IF i2≤numCards THEN Any more cards from the seond sub-deck 

to merge? 
        cards(1,i):=cardsCopy(1,i2); Copy the card to the merged deck. 
        i2:=i2+1;  
        i:=i+1;  
      END;  
    UNTIL i1>median AND i2>numCards; Stop when all cards have been merged. 
  END;  
  stackHeight:=numCards; Set the number of available cards to 

draw. 
  RETURN "DECK SPLIT SHUFFLED";  
END;  
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Table B8– The listing for the GETCARD program 
 

Statement Comment 
EXPORT GETCARD()  
BEGIN  
  LOCAL i,j;  
    
  IF stackHeight>0 THEN Can we draw another card? 
    i:=cards(1,stackHeight); Get the numeric code for the next card 

to draw. 
    j:=i;  
    i:=INT(i/100); Calculate card face index. 
    j:=j-100*i; Calculate card value. 
    stackHeight:=stackHeight-1;  
    RETURN CONCAT(setNames(i),cardNames(j)); Return a list that identifies the card 

drawn. 
  ELSE  
    RETURN "NO CARDS AVAILABLE!";  
  END;  
END;  

 

Sample Sessions 
 

Let’s use the functions InitDOC, SHUFCARDS, and GETCARD to initialize a deck of cards, shuffle 
the cards, and draw cards, respectively. Figure B4 shows the output when using the following functions: 
 

• The function InitDOC which initializes the deck of cards. 
• The function SHUFCARDS that shuffles the deck by randomly arranging the cards. 

 

• The function GETCARD that draws a card from the deck. Figure B4 shows two calls to function 
GETCARD. 

 

 
 

Figure B4. Using functions InitDOC, SHUFCARDS, and GETCARD. 
 
Figure B5 shows additional calls to function GETCARD. 
 

 
 

Figure B5. Additional calls to function GETCARD. 
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Now, let’s use the functions InitDOC, SPLITCARDS, and GETCARD to initialize a deck of cards, 
shuffle the cards, and draw cards, respectively. Figure B6 shows the output when using the following 
functions: 
 

• The function InitDOC which initializes the deck of cards. 
• The function SPLITCARDS(7) that shuffles the deck by splitting and merging the cards seven 

times. 
• The function GETCARD that draws a card from the deck.  

 
 

 
 

Figure B6. Using functions InitDOC, SPLITCARDS, and GETCARD. 
 
Figure B7 shows additional calls to function GETCARD. 
 

 
 

Figure B7. Additional calls to function GETCARD. 
 

Bonus Program 
 

This section presents a bonus program that allows you to check that a shuffled deck contains no duplicates or 
missing cards. Table B9 contains the listing for the COMPARE function. This function has one parameter, 
myCards, which is the single-row matrix that stores the numerical codes for the various cards. The function 
compares the values in the argument for myCards with those in an internally created standard card deck. The 
function returns the number of missing or duplicate cards. A zero result indicates that the argument for myCards 
stores a valid deck of cards. 
 

Figure B8 shows a sample session for using function COMPARE. The output of this function shows that the 
shuffled cards, stored in variable cards, match the cards of a standard deck. 
 

 
 

Figure B8 - Additional calls to function GETCARD 
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Let’s test COMPARE’s ability to catch errors in a corrupted deck of cards. Perform the following tasks: 
 

• Execute the InitDOC function to initialize the deck of cards. 
• Set cards(1,2) to 101 by typing cards(1,2):=101. 
• Set cards(1,3) to 101 by typing cards(1,3):=101. Now we have two duplicates 101 and no values 

for 102 and 103. 
• Execute COMPARE(cards). The function returns 2, the number of duplicate/missing cards. 

 
Figure B9 and B10 show the above tasks. 
 

Table B9 – The listing for the COMPARE Program 
 

Statement Comment 
EXPORT COMPARE(myCards)  
BEGIN  
  LOCAL stdCards;  
  LOCAL i,j,k,n;  
  
  stdCards:=MAKEMAT(0,1,numCards); Create matrix that will store the data for a 

standard deck of cards. 
  k:=0;  
  FOR i FROM 1 TO 4 DO Start nested loop to store numerical codes for 

cards in matrix stdCards. 
    FOR j FROM 1 TO 13 DO  
      k:=k+1;  
      stdCards(1,k):=100*i+j;  
    END;  
  END;  
  
  n:=numCards; Initialize number of different cards. 
  FOR i FROM 1 TO numCards DO Start looping for each member of matrix 

stdCards. 
    FOR j FROM 1 TO numCards DO Start looping for each member of matrix 

myCards. 
      IF stdCards(1,i)==myCards(1,j) THEN If the values of stdCards(1,i) and myCards(1,j) 

have the same values, decrement variable n. 
        n:=n-1;  
        j:=numCards; Set j to last loop value for an early loop exit. 
      END;  
    END;  
  END;  
  RETURN n; Return the number of different cards. 
END;  

 

 
 

Figure B9. Testing a corrupted deck of cards, part 1. 
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Figure B10. Testing a corrupted deck of cards, part 2. 
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 ____________________________________________________________________________________ 
Notes for The Randomness of HP Appendix B 
(B1).  For a discussion on how HP’s RPN has evolved see the article HP RPN Evolves (pdf file) at: 
          http://h20331.www2.hp.com/hpsub/downloads/S07%20HP%20RPN%20Evolves%20V5b.pdf  
 

(B2)  These programs are taken from an Educalc class handout from instructors Joe Horn & Richard Nelson titled 
BINGO – Part I (identifying the balls, 2 pp.) and part II (creating, mixing, and selecting the balls, 4 pp.) 
dated March 27, 1998. 

 

(B3)  The card identification program was taken from a 7 pp. HHC 1994 HP 49 Programming Problem CHIP 
Meeting – June 24, 1994 titled Describe Playing Card from its number by Richard J. Nelson.  This is written 
from a Programming Exercise perspective which includes multiple programs for a problem with each version 
making improvements towards an optimum shortest/fastest program as a student’s thought process to learn 
programming. 
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