

The Birth of an Algorithm
Namir Shammas

Introduction

Solving for the roots of nonlinear functions and polynomials is one of the cornerstones of numerical
analysis. Over the centuries, mathematicians have developed new root-seeking algorithms and refined
existing ones. The Bisection method remains one of the simplest and slowest root-seeking methods.
Numerical Analysis books still discuss the Bisection method mainly for historical reasons. The method’s
main virtue is that is it guaranteed to obtain the root in proper ranges of values that contain a root.

This article shows you how to start with the Bisection method and create a new version that significantly
accelerates the rate of convergence to a root value. The process is iterative. You will see a few design
choices—ones that work and one that does not. I will present implementations for the HP Prime graphing
calculator.

The Bisection Method

The Bisection method implements a simple idea. Given a root-bracketing range [A, B] and a function f(x)
= 0 that is continuous in that range, the method iteratively shrinks that root-bracketing range. The basic
idea as follows:

 Pick a point m inside the range [A, B]. The best choice for m is the median of that range.
 Calculate the value of f(m).
 Compare the signs of f(m) and f(A). If the two functions have the same sign, then replace A with

m. Otherwise replace B with m. This step reduces the size of the root-bracketing interval by half.
 Repeat the above steps until the absolute difference between the updated values of A and B is

equal and/or below a small tolerance value. This tolerance value reflects the accuracy of the
calculated root.

We can calculate the number of iterations required to reduce the initial root-bracketing interval into one
equal or less than the tolerance value. The estimated number of iterations is approximately log(|B-
A|/tolerance)/log(2). This is a unique feature of the Bisection method. The implementations of the
Bisection method usually store the values of f(A) and f(B) to avoid recalculating them in subsequent
iterations. In the range-reducing step, the stored value of f(A) or f(B) is replaced by the value of f(m).
Figure 1 shows a general plot for a Bisection method iteration.

Figure 2 – The Bisection method.

HP Solve # 33 Page 26 STEM Education Page 1 of 7

Listing 1 shows the HP Prime source code for functions MYFX and Bisection. The first Prime function
implements the mathematical function f(x) = 0. The second Prime function implements the Bisection
method. This function has three argument, namely, a, b, and toler (the tolerance value). The function
returns a list containing the root value and the number of iterations. Listing 1 has the target function
coded as ex–3x2. Throughout this article we will find the roots of this function. If you want to locate the
roots of another function, you need to edit the statements inside MYFX.

EXPORT MYFX(x)
BEGIN
 RETURN e^(x)-3*x²;
END;

EXPORT Bisection(a,b,toler)
BEGIN
 LOCAL Fa, Fb, m, Fm, iter;

 Fa:=MYFX(a);
 Fb:=MYFX(b);
 IF Fa*Fb>0 THEN
 RETURN "A and B have same sign functions";
 END;

 iter:=0;
 REPEAT
 iter:=iter+1;
 m:=(a+b)/2;
 Fm:=MYFX(m);
 IF Fa*Fm>0 THEN
 a:=m;
 Fa:=Fm;
 ELSE
 b:=m;
 Fb:=Fm;
 END;
 UNTIL (ABS(a-b)<toler OR Fm==0);
 RETURN {(a+b)/2,iter};
END;

Listing1 – The Bisection function.

Notice that function Bisection checks the signs of the initial values of f(A) and f(B). If they are the same,
the function returns an error message. Figure 2 show sample use of the Bisection function. The

Figure 2 – Sample use of the Bisection Function.

HP Solve # 33 Page 27 STEM Education Page 2 of 7

calculations show how to obtain roots in the intervals [3, 4], [3, 5], [–1, 0], and [0, 1]. The first two
intervals lead to the same root. The number of iterations is rather high due to the slow convergence.

The Bisection Plus Algorithm Take 1

Now that you have seen and worked with the Bisection method, let’s look into improving it. While
selecting the median of the root-bracketing interval is optimum in certain ways, let’s see if we can do
better. The first approach is to calculate a random value around the median. This approach requires
defining a range around the median from which we get a random value. If use a broad range around the
median we may drift close towards the end of the interval [A, B]. Statistically, this wide range will give
us poorer performance on the average. By contrast, a rather narrow interval around the median might
help us tweak the midpoint selection. I choose to make that interval as |(B–A)|/4. This means that the
interval will range from |(B–A)|/8 below the median to |(B–A)|/8 above it. Mathematically this translates
into:

m = (A+B)/2 + |(B–A)|/4 * (Random number between –0.5 and 0.5)

Figure 3 shows a general plot for the Bisection Plus (take 1) method. The red region depicts the range
used to calculate the random value of m. The figure also marks the midpoint of the range [A, B].

Figure 3 – The Bisection Plus (take 1) method.

Listing 2 shows the HP Prime implementation of the above method as function BisecPlus1.

EXPORT BisecPlus1(a,b,toler)
BEGIN
 LOCAL Fa, Fb, m, Fm, iter, r;

 Fa:=MYFX(a);
 Fb:=MYFX(b);
 IF Fa*Fb>0 THEN
 RETURN "A and B have same sign functions";
 END;

 iter:=0;
 REPEAT
 iter:=iter+1;
 m:=(a+b)/2;
 r:=ABS(b-a)/4;

HP Solve # 33 Page 28 STEM Education Page 3 of 7

 m:=m+r*(RANDOM()-0.5);
 Fm:=MYFX(m);
 IF Fa*Fm>0 THEN
 a:=m;
 Fa:=Fm;
 ELSE
 b:=m;
 Fb:=Fm;
 END;
 UNTIL (ABS(a-b)<toler OR Fm==0);
 RETURN {(a+b)/2,iter};
END;

Listing2 – The BisecPlus1 function.

Listing 2 shows the code for function BisecPlus1. This function has the same parameters and returns the
same type of values as function Bisection. Keep in mind that the number of iterations will vary when you
run the function several times, since the code uses random numbers. Figure 4 shows sample runs for the
function BisecPlus1. The figure shows several runs for the root in the interval [3, 4]. Notice that the
number of iterations ranges from 27 to 29. Nevertheless the results are disappointing since the change in
the algorithm did not significantly reduce the number of iterations.

Figure 4 – Sample use of the BisecPlus1 Function.

The Bisection Plus Algorithm Take 2

The first attempt to improve the Bisection method basically fell flat on its face. Back to the proverbial
drawing board!

I was inspired for the next approach by Ostrowski’s root-seeking method[3]. Unlike typical root-seeking
algorithms, Ostrowski designed his algorithm to calculate not one, but two refinements for the root in
each iteration! Thus the new approach observes the following tasks:

 Calculate the midpoint m and its function value f(m) just like with the Bisection method.
 Use the point at the median and either range endpoints to calculate a straight line. Find the X

intersect of that line, call it m2. An alternative approach is to calculate m2 as the X intersect of the
line going through the points at A and B. This alternate approach does well for some cases, but
not as good as the approach using the point at (m, f(m)).

 Determine if m and m2 have functions of opposite signs. If this condition is true, then the method
replaces the root-bracketing range [A, B] with the narrower range of [m, m2].

 If m and m2 have functions of the same sign, replace A or B with m2, just like in the Bisection
method.

HP Solve # 33 Page 29 STEM Education Page 4 of 7

 The iterations should also check if the value of m2 is very close to the one in the previous
iteration. If this is the case, the method can return a root value.

The design of the step for calculating m2 went through several refinements. The choices available for
calculating m2 were:

1. Always calculate m2 using points (A, f(A)) and (m, f(m)).
2. Systematically alternate the calculation of m2 between using points (A, f(A)) and (m, f(m)) and

points (B, f(B)) and (m, f(m)).
3. Select A or B, such that the sign of the associated function value is opposite of the sign of f(m).

Use that end point and (m, f(m)) to calculate m2.

The third choice proved to be the best, because it made sure that m2 falls in the interval of [A, B]. In
addition, the calculated straight line is using the point at m, which is usually closer to the root than the
points at A and B. Figure 5 shows a general plot for the new Bisection (take 2) method.

Figure 5 – The Bisection Plus (take 2) method.

Listing 3 shows the HP Prime implementation of the above method as function BisecPlus2.

EXPORT BisecPlus2(a,b,toler)
BEGIN
 LOCAL Fa, Fb, m, Fm, iter, lastm2;
 LOCAL m2, Fm2, slope, intercept;

 Fa:=MYFX(a);
 Fb:=MYFX(b);
 IF Fa*Fb>0 THEN
 RETURN "A and B have same sign functions";
 END;

 lastm2:=a;
 iter:=0;
 REPEAT
 iter:=iter+1;
 m:=(a+b)/2;
 Fm:=MYFX(m);
 IF Fa*Fm>0 THEN
 slope:=(Fb-Fm)/(b-m);
 intercept:=Fb-slope*b;

HP Solve # 33 Page 30 STEM Education Page 5 of 7

 ELSE
 slope:=(Fa-Fm)/(a-m);
 intercept:=Fa-slope*a;
 End;
 m2:=-intercept/slope;
 Fm2:=MYFX(m2);
 IF Fm*Fm2<0 THEN
 a:=m;
 Fa:=Fm;
 b:=m2;
 Fb:=Fm2;

 ELSE
 IF Fa*Fm2>0 THEN
 a:=m2;
 Fa:=Fm2;
 ELSE
 b:=m2;
 Fb:=Fm2;
 END;
 END;
 IF Fa*Fm>0 THEN
 a:=m;
 Fa:=Fm;
 ELSE
 b:=m;
 Fb:=Fm;
 END;
 IF ABS(lastm2-m2)<toler THEN
 RETURN {(a+b)/2,iter};
 END;
 lastm2:=m2;
 UNTIL (ABS(a-b)<toler OR Fm==0);
 RETURN {(a+b)/2,iter};
END;

Listing3 – The BisecPlus3 function.

Listing 3 shows the code for function BisecPlus2. This function has the same parameters and returns the
same type of values as function Bisection. Figure 6 shows several runs for the root in the intervals [3, 4],
[3, 5], [–1, 0] and [0, 1]. The results are very encouraging and show that the additional linear
interpolation step contributes significantly to zooming in on the root. The price to pay for this
acceleration is having two function calls per iteration, as opposed to a single one in the Bisection method.

Figure 6 – Sample use of the BisecPlus2 Function.

HP Solve # 33 Page 31 STEM Education Page 6 of 7

Nevertheless, the total number of function calls in this version of the Bisection Plus is still less than that
of the Bisection method.

How Good is the Bisection Plus Method?
I have compared the results of the Bisection Plus method with Newton’s method (the most popular
method) and the results are very encouraging. In most cases, the Bisection Plus gives results that are not
far behind those of Newton’s method. In some cases, the Bisection Plus is able to match or even outdo
Newton’s method.

Observations and Conclusions

This article showed you the process of crafting a new algorithm from an old one. While the first attempt
failed, the second one produced encouraging results. The Bisection Plus method uses midpoint selection
followed by a linear interpolation to zoom in on the root. The new method is not susceptible to low
tangent values near the root as is the case with Newton’s method.

References

1. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical
Recipes: The Art of Scientific Computing, 3rd edition, Cambridge University Press; 3rd edition,
September 10, 2007.

2. Richard L. Burden, J. Douglas Faires, Numerical Analysis, Cengage Learning, 9th edition, August
9, 2010.

3. Namir Shammas, Ostrowski’s Method for Finding Roots, HP Solve, July 2012, issue #28.

About the Author

Namir Shammas is a native of Baghdad, Iraq. He resides in Richmond,
Virginia, USA. Namir graduated with a degree in Chemical Engineering
from the University of Baghdad. He also received a master degree in
Chemical Engineering from the University of Michigan, Ann Arbor. He
worked for a few years in the field of water treatment before focusing for 17
years on writing programming books and articles. Later he worked in
corporate technical documentation. He is a big fan of HP calculators and
collects many vintage models. His hobbies also include traveling, music,
movies (especially French movies), chemistry, cosmology, Jungian
psychology, mythology, statistics, and math. As a former PPC and CHHU
member, Namir enjoys attending the HHC conferences. Email me at:
nshammas@aol.com

HP Solve # 33 Page 32 STEM Education Page 7 of 7

