

 HP Client Management Interface
Technical White Paper

Introduction... 2
Background .. 2
Benefits .. 3
Architecture .. 4

Hardware Sensor Information .. 5
Hardware Configuration Options... 6
System Health Events .. 6

Available Software Products.. 7
HP Client Management Interface Software Provider.. 7
HP Client Manager .. 8
HP System Software Manager ... 9

Developing Custom Solutions .. 9
Hardware Sensor Information .. 9
Hardware Configuration Options... 12
System Health Events .. 15
Example applications ... 16

Retrieving BIOS Settings .. 16
Changing the Ownership Tag.. 17
Changing the Boot Order.. 18
Enabling Hyper-Threading ... 18
Setting BIOS Defaults .. 19
Monitoring Events... 20

Security .. 22
Preserving Password Integrity .. 22
Configuring WMI Security .. 24

For more information.. 26
Call to action .. 26

2

Introduction
This white paper provides technical information on the HP Client Management Interface (HP CMI). HP
CMI is an open architecture for gathering client computer inventory, monitoring health events, and
managing BIOS configuration settings on HP business class client computers. This interface is included
standard on select new models beginning with the HP Compaq dc7600 series and dx7200 series
business desktops, and the HP xw4300 workstation. An HP CMI Software Provider SoftPaq is also
available for legacy models and may be downloaded from HP.com.

This document describes the business need which drove development of HP CMI, benefits of the
interface, architectural details, examples of how HP CMI can be used to carry out various client
management tasks, and the security model.

Background
Historically, it has been a challenge for customers to easily integrate HP client computers with systems
management tools and applications they are using. The typical management software model relies on
a “software management agent” installed on the client computer. This software agent exposes
management instrumentation through a proprietary driver and hardware interface and communicates
with the systems management tool console. Often, the software agent must be updated and
redeployed as new manageability features and new computer models are introduced.

Traditional Management Software Model

This traditional management software model contains three tightly integrated components: the
computer hardware to be instrumented, an operating system specific driver to surface the
instrumentation, and a software agent to expose and communicate the instrumented data with the
management software console. In most cases these software agents are further specialized by the

3

manner they surface the instrumented data to applications. This approach has made integration of
advanced management features into commercial management software slow, and development of
feature-rich custom-developed management applications difficult to accomplish.

Recognizing the need for a better solution, HP has developed the HP Client Management Interface.
HP CMI provides a zero-footprint, programmatic interface built on industry standards that systems
management tools and custom management applications can access to gather inventory information,
heath alerts, and manage BIOS configuration.

Benefits
HP business-class client computers equipped with HP Client Management Interface technology provide
an unprecedented level of out-of-the-box management capability. HP CMI provides the following
benefits:

Flexible and open

• Built on industry standards for gathering inventory and health status information.
• Simple and scriptable instrumentation allows IT professionals to easily integrate with existing

management tools or develop custom management applications.
• Client computer instrumentation can be made available to a central management console

application and/or locally at the client computer.
• Computer health events are sent in real-time — no waiting for the management agent to poll for

client status.

Consistent

• Provides a common interface to management information across HP business-class client computers
equipped with HP CMI.

• Provides a stable foundation to future hardware management features.
• Interface behavior is consistent between 32-bit and 64-bit versions of Windows, and the next

version of the Windows operating system.

Easy to manage

• No software agent is required to access client computer inventory information, health status and
manage BIOS configuration.

• New client computers seamlessly integrate into the managed environment without re-tooling
management software.

• Leverages operating system policies for configuration and security.

4

Architecture
Systems management technology has matured in recent years with the widespread adoption of the
Common Information Model (CIM) and Web-Based Enterprise Management (WBEM) as a
vendor-neutral method for describing the myriad of management elements available across the
enterprise from client systems to storage area networks. This trend has made management of
enterprise resources easier, and systems management applications more powerful in their ability to
interpret heterogeneous management information.

Windows Management Instrumentation is Microsoft’s implementation of the WBEM initiative, and is
available as a component of the operating system. WMI uses the CIM standard to represent systems,
applications, networks, devices, and other managed components. WMI can be used to automate
administrative tasks in an enterprise environment. WMI features query-based information retrieval,
relationship and data modeling, event subscription services, and access from any programming
language capable of supporting Component Object Model (COM)1, such as C++, Visual Basic, or
scripting languages under Windows Scripting Host.

HP Client Management Interface Model

Hardware

OS

Client

Network

HP Client Management Interface leverages WMI to surface management information directly from the
hardware and system BIOS, and in doing so gains all the benefits associated with the WMI interface
to management information.

1 Component Object Model is a specification developed by Microsoft. It provides the framework for technologies such as ActiveX.

5

HP CMI exposes three classifications of management information about the underlying hardware
platform:

• Hardware sensor information
This includes information about physical sensors within the client computer. The interface supports a
wide variety of sensor types, including both numerical sensors such as fan speed (rpm) and sensors
based on a physical state, such as the state of a case lock (open, closed). Sensor data is surfaced
as an enumeration in WMI, which provides flexibility in the number and types of sensors reported
from platform to platform.

• Hardware configuration options
Instrumentation information related to configuring hardware options includes a multitude of features.
These features are exposed in both a general and specialized manner to systems management
applications. As with sensor data, hardware configuration options are surfaced as an enumeration
in WMI, which provides flexibility in the number and types of sensors reported from platform to
platform.

• System health events
System health events are dynamically surfaced based on triggered hardware events. WMI provides
a convenient, low-bandwidth mechanism for management information consumers to subscribe to
these hardware events and be notified in real-time. These events can be monitored at the local client
computer or by a remote console.

Hardware Sensor Information
HP CMI defines a base model for surfacing hardware sensor data to management applications. This
model supports extension in two ways:

1. Enumeration of sensors physically attached to a given platform can be generalized by querying
against the base class. This allows management tools to automatically detect available sensor
devices without recoding.

2. Definition of new sensor types will extend the general definitions provided by the interface. This
approach guarantees that properties known and understood today will continue to possess the
same characteristics and behaviors as new features are introduced.

The following table defines the basic set of services provided by HP CMI to support the surfacing of
hardware sensor data to management applications.

Management Class Description

HP_BIOSSensor Defines the basic set of properties common to all types of hardware
sensors. All hardware sensors available on a particular platform can be
surfaced by enumerating this class.

HP_BIOSStateSensor This class provides access to a category of sensors that our monitored
by state changes only. State changes are defined by an array of
possible values within each sensor definition. Examples of state-based
sensors would include POST warnings, physical switches, or solenoids.

HP_BIOSNumericSensor Defines the category of sensors that return numerical measurements.

6

Hardware Configuration Options
One of the most compelling features of HP CMI is the power to manipulate and change hardware
configuration options in an open and adaptable manner. WMI provides a foundation for scriptable
administration of operating system options that is well proven in the enterprise management
community. HP CMI leverages that foundation to provide the IT administrator with an unprecedented
degree of control in managing configurations across the enterprise. As with sensor information, the
mechanisms provided for collecting and manipulating hardware configuration options are designed
with forward compatibility and future capabilities in mind.

The following table illustrates the inherent capability and flexibility of HP CMI in dealing with various
types of hardware configuration options.

Management Class Description

HP_BIOSSetting Defines the basic set of properties common to all forms of BIOS
settings. All hardware configuration options supported by the platform
can be surfaced by enumerating this class.

HP_BIOSString Extension of HP_BIOSSetting to support string-based hardware
configuration options. This would include such capabilities as:
ownership tag, asset tracking number, and UUID.

HP_BIOSInteger Extension of HP_BIOSSetting to support numeric hardware
configuration options.

HP_BIOSEnumeration Most hardware configuration options fall into an enumeration category.
Enumerations are collections of possible values for a setting (usually
expressed as human-readable text). Example enumerations would be:
“On, Off” or “Enable, Disable”.

HP_BIOSOrderedList This class extends the HP_BIOSSetting to support such hardware
features as boot order.

HP_BIOSPassword While password values are never exposed through the HP CMI model,
this class exists to help determine the existence of various password
options on the client platform. This class would be queried to determine
if a setup password was currently set on the platform, for example.

HP_BIOSSettingInterface This class provides access to the WMI methods exposed by HP CMI.
This includes methods to set individual settings and reset all settings to
a default state.

System Health Events
Traditionally, system health monitoring has required a management agent to poll hardware features
at some deterministic frequency in order to discover possible warning and error conditions within the
system. This polling model of health measurement requires system resources and, potentially, network
resources to monitor and maintain. In addition, the longer the polling interval, the longer it takes to
potentially discover the triggering event. HP CMI breaks this mold of system health notification by
surfacing events directly from the hardware when they are discovered. Management applications
designed to consume WMI events can be configured to subscribe to the events generated by HP CMI
without impacting system performance or network bandwidth.

The following table outlines some of the event monitoring capabilities provided by HP CMI. Like all HP
CMI features, new events can be introduced with new hardware platforms or through system firmware
updates without impacting the design of the interface or management tools designed to consume the
events.

7

Event Type Description

Sensor related Events associated with health-monitoring sensors on the hardware
platform. Sensor related events include: over-temperature, fan stalls,
and chassis intrusion detection.

Device failures Device failures refers to events for devices that are not monitored
through hard-wired sensors, such as an ECC memory failure.

Configuration changes When hardware configuration options are modified, or an attempt is
made to modify these options without proper authority, HP CMI will
generate related events to provide a mechanism to monitor and audit
the interface from within the enterprise.

Available Software Products
HP Client Management Interface is included standard on select new HP business client computer
models. An HP CMI Software Provider is also available for legacy models. In addition, several HP
Client Management Solutions leverage the features of HP CMI.

HP Client Management Interface Software Provider
The HP CMI Software Provider, available as a SoftPaq downloadable from HP.com, extends many of
the capabilities of the HP Client Management Interface for legacy HP business computers. While the
HP CMI Software Provider does not contain all the features and flexibility of native HP CMI support,
the Software Provider allows IT managers to reap many of the same benefits exposed by HP CMI on
their existing hardware infrastructure.

The following diagram shows how HP CMI Software Provider is a hybrid of the traditional
management agent framework and the WMI instrumentation management model exposed by HP
CMI.

8

HP Client Management Interface Model

Hardware

OS

Client

Network

HP CMI Software Provider creates the necessary definitions to support the hardware configuration
option classes defined by the native HP CMI architecture. This allows for hardware configuration
scripts and management application to interact with instrumented configuration data without the
necessity of understanding if the underlying implementation is hardware or software based.

HP BIOS Configuration for ProtectTools

HP BIOS Configuration for ProtectTools version 2.0 provides the capability to access and modify
BIOS configuration details from within the HP ProtectTools interface. This application utilizes the
data-driven model used within HP CMI. Because HP CMI is designed to expose information in a
consistent manner regardless of varying platform feature sets, BIOS Configuration is capable of
supporting a wide range of features and platforms with minimal, if any, need to upgrade the
application.

HP Client Manager
HP Client Manager provides centralized hardware management of HP business PCs, notebooks and
workstations. Features include the ability to get in-depth hardware inventory information, monitor
system health status, run diagnostic tests, remotely install drivers and manage BIOS settings updates
without visiting each client computer. Beginning with version 6.1, HP Client Manager takes
advantage of HP CMI exposed features and capabilities.

9

HP System Software Manager
HP System Software Manager (SSM) is a valuable tool in the custom IT solution arsenal for managing
HP client computers. HP SSM supports automation of software and BIOS updates, and an ability to
report and modify BIOS settings through a text-based file format. Available later this year, SSM 2.0
will leverage HP CMI to provide BIOS configuration support to 32-bit and 64-bit versions of Windows
in a manner familiar to users of the utility.

Developing Custom Solutions
The following sections describe the HP CMI architecture at a detailed level for application developers
and IT professionals familiar with WMI and CIM concepts. There are several reference links at the
end of this paper to learn more information on CIM and the capabilities of WMI-based management
solutions.

The management classes are described that are surfaced through HP CMI in managed object format
(MOF) syntax. HP CMI relies on the object inheritance capability of CIM to create a flexible and
extensible interface to hardware instrumentation details.

Following the explanation of the properties and methods provided via HP CMI, several examples are
provided to demonstrate the capability of HP CMI in handling client management tasks.

The examples presented herein are based on Windows Scripting Host technology. However, any
development environment capable of connecting to WMI could be used instead. Microsoft Visual
Basic Scripting Edition is used to simplify the example scenarios.

Hardware Sensor Information

MOF Definition

#pragma namespace("\\\\.\\root\\HP\\InstrumentedBIOS");

[abstract]
class HP_BIOSSensor
{
 [read] string Name;
 [read] string Description;
 [read, ValueMap {"0","1","2","3","4","5","6","7","8","9",
 "10","11","12"}, Values {"Unknown","Other","Temperature",
 "Voltage","Current","Tachometer","Counter","Switch","Lock",
 "Humidity","Smoke Detection","Presence","Air Flow"}]
 uint32 SensorType;
 [read] string OtherSensorType;
 [read, ValueMap {"0","1","2","3","4","5","6","7","8","9",
 "10","11","12","13","14","15","16","17","18","..",
 "0x8000.."}, Values {"Unknown","Other","OK","Degraded",
 "Stressed","Predictive Failure","Error",
 "Non-Recoverable Error","Starting","Stopping","Stopped",
 "In Service","No Contact","Lost Communication","Aborted",
 "Dormant","Supporting Entity in Error","Completed",
 "Power Mode","DMTF Reserved","Vendor Reserved"}]
 uint32 OperationalStatus;
 [read] string CurrentState;
 [read] string PossibleStates[];
};

class HP_BIOSStateSensor : HP_BIOSSensor

10

{
};

class HP_BIOSNumericSensor : HP_BIOSSensor
{
 [read, ValueMap {"0","1","2","3","4","5","6","7","8","9",
 "10","11","12","13","14","15","16","17","18","19","20",
 "21","22","23","24","25","26","27","28","29","30","31",
 "32","33","34","35","36","37","38","39","40","41","42",
 "43","44","45","46","47","48","49","50","51","52","53",
 "54","55","56","57","58","59","60","61","62","63","64",
 "65"}, Values {"Unknown","Other","Degrees C","Degrees F",
 "Degrees K","Volts","Amps","Watts","Joules","Coulombs",
 "VA","Nits","Lumens","Lux","Candelas","kPa","PSI",
 "Newtons","CFM","RPM","Hertz","Seconds","Minutes",
 "Hours","Days","Weeks","Mils","Inches","Feet",
 "Cubic Inches","Cubic Feet","Meters","Cubic Centimeters",
 "Cubic Meters","Liters","Fluid Ounces","Radians",
 "Steradians","Revolutions","Cycles","Gravities","Ounces",
 "Pounds","Foot-Pounds","Ounce-Inches","Gauss","Gilberts",
 "Henries","Farads","Ohms","Siemens","Moles","Becquerels",
 "PPM (parts/million)","Decibels","DbA","DbC","Grays",
 "Sieverts","Color Temperature Degrees K","Bits","Bytes",
 "Words (data)","DoubleWords","QuadWords","Percentage"}]
 uint32 BaseUnits;
 [read] sint32 UnitModifier;
 [read] uint32 CurrentReading;
};

Property Details

Class Property Description

Name Name identifying the sensor being reported. Typically this will follow
the format <device>_<device number> (ex: Fan_01).

Description A textual description of the sensor. This may indicate which entity this
sensor monitors in a form-factor that could have multiple sensors of the
same type.

SesnorType The type of the Sensor, e.g. Voltage or Temperature Sensor. If the type
is set to "Other", then the OtherSensorType can be used to further
identify the type, or if the Sensor has numeric readings, then the type of
the Sensor can be implicitly determined by the Units. A description of
the different Sensor types is as follows: A Temperature Sensor measures
the environmental temperature. Voltage and Current Sensors measure
electrical voltage and current readings. A Tachometer measures
speed/revolutions of a device. For example, a Fan Device can have an
associated Tachometer which measures its speed. A Counter is a
general purpose Sensor that measures some numerical property of a
Device. A Counter value can be cleared, but it never decreases. A
Switch Sensor has states like Open/Close, On/Off, or Up/Down. A
Lock has states of Locked/Unlocked. Humidity, Smoke Detection and
Air Flow Sensors measure the equivalent environmental characteristics.
A Presence Sensor detects the presence of a physical element.

OtherSensorType A string describing the Sensor type. Used when the SensorType
property is set to "Other".

OperationalStatus Indicates the current status(es) of the element. Various operational

11

statuses are defined. Many of the enumeration's values are
self-explanatory. However, a few are not and are described in more
detail.

"Stressed" indicates that the element is functioning, but needs attention.
Examples of "Stressed" states are overload, overheated, etc.

"Predictive Failure" indicates that an element is functioning nominally
but predicting a failure in the near future.

"In Service" describes an element being configured, maintained,
cleaned, or otherwise administered.

"No Contact" indicates that the monitoring system has knowledge of
this element, but has never been able to establish communications with
it.

"Lost Communication" indicates that the ManagedSystemElement is
known to exist and has been contacted successfully in the past, but is
currently unreachable.

"Stopped" and "Aborted" are similar, although the former implies a
clean and orderly stop, while the latter implies an abrupt stop where
the element's state and configuration may need to be updated.

"Dormant" indicates that the element is inactive or quiesced.

"Supporting Entity in Error" describes that this element may be "OK"
but that another element, on which it is dependent, is in error. An
example is a network service or endpoint that cannot function due to
lower layer networking problems.

"Completed" indicates the element has completed its operation. This
value should be combined with either OK, Error, or Degraded so that a
client can till if the complete operation passed (Completed with OK),
and failure (Completed with Error). Completed with Degraded would
imply the operation finished, but did not complete OK or report an
error.

"Power Mode" indicates the element has additional power model
information contained in the Associated PowerManagementService
association.

PossibleStates PossibleStates enumerates the string outputs of the Sensor. For example,
a "Switch" Sensor may output the states "On", or "Off". Another
implementation of the Switch may output the states "Open", and
"Close". Another example is a NumericSensor supporting thresholds.
This Sensor can report the states like "Normal", "Upper Fatal", "Lower
Non-Critical", etc. A NumericSensor that does not publish readings
and thresholds, but stores this data internally, can still report its states.

CurrentState The current state indicated by the Sensor. This is always one of the
"PossibleStates”.

BaseUnits The base unit of the values returned by this Sensor. All the values
returned by this Sensor are represented in the units obtained by
(BaseUnits * 10 raised to the power of the UnitModifier). For example,
if BaseUnits is Volts and the UnitModifier is -6, then the units of the
values returned are MicroVolts.

UnitModifier The unit multiplier for the values returned by this Sensor. All the values
returned by this Sensor are represented in the units obtained by
(BaseUnits * 10 raised to the power of the UnitModifier). For example,
if BaseUnits is Volts and the Unit Modifier is -6, then the units of the
values returned are MicroVolts.

CurrentReading The current value indicated by the sensor.

12

Hardware Configuration Options

MOF Definition

#pragma namespace("\\\\.\\root\\HP\\InstrumentedBIOS");

[abstract]
class HP_BIOSSetting
{
 [read] string Name;
 [read] string Value;
 [read] string Path;
 [read] uint32 IsReadOnly;
 [read] uint32 DisplayInUI;
 [read] uint32 RequiresPhysicalPresence;
 [read] uint32 Sequence;
 [read] string Prerequisites[];
};

class HP_BIOSString : HP_BIOSSetting
{
 [read] uint32 MinLength;
 [read] uint32 MaxLength;
};

class HP_BIOSInteger : HP_BIOSSetting
{
 [read] uint32 LowerBound;
 [read] uint32 UpperBound;
 [read] uint32 IntValue;
};

class HP_BIOSEnumeration : HP_BIOSSetting
{
 [read] string CurrentValue;
 [read] uint32 Size;
 [read] string PossibleValues[];
};

class HP_BIOSOrderedList : HP_BIOSSetting
{
 [read] uint32 Size;
 [read, ArrayType("orderlist")] string Elements[];
};

class HP_BIOSPassword : HP_BIOSSetting
{
 [read] uint32 MinLength;
 [read] uint32 MaxLength;
 [read] string SupportedEncoding[];
 [read] uint32 IsSet;
};

[abstract, singleton]
class HP_BIOSSettingInterface
{
 [implemented] void SetBIOSSetting(
 [out, ValueMap {"0","1","2","3","4","5","6"},

13

 Values {"Success","Not Supported","Unspecified Error",
 "Timeout","Failed","Invalid Parameter","Access Denied"}]
 uint32 Return,
 [in] string Name,
 [in] string Value,
 [in, optional] string Password);

 [implemented] void SetSystemDefaults(
 [out: ToSubclass ToInstance,
 [out, ValueMap {"0","1","2","3","4","5","6"},
 Values {"Success","Not Supported","Unspecified Error",
 "Timeout","Failed","Invalid Parameter","Access Denied"}]
 uint32 Return,
 [in, optional] string Password);
};

In the MOF definition provided, notice that all of the class properties are read only. These classes do
not support update dynamic instance updates via the WMI _Put method. To change any of the
instances requires using the methods surfaced from the HP_BIOSSetingInterface class. Example scripts
provided later in this paper will demonstrate how to use this class appropriately.

Property Details

Class Property Description

Name This property contains the human readable name for the BIOS setting.
This text should be similar to what is exposed through the F10
Computer Setup application. Setting names are unique in nature, as
this value is used to identify the entity to change or update in calls
through calls to the SetBIOSSetting() method.

Value This property contains a string representation of the intended BIOS
setting. List entities are separated by commas. Enumeration selections
are designated by the presence of an asterisk character (ex: “*Enable,
Disable” denotes a setting is enabled in an enumeration setting.

Path This property provides a string representation of the setting hierarchy
that encapsulates this instance data. Each level of the hierarchy is
separated by a backslash. This hierarchy will usually follow the
appearance and grouping of items within F10 Computer Setup.

IsReadOnly Value indicating if this setting is supported by the interface method
HP_BIOSSettingInterface.SetBIOSSetting(). A value of 1 indicates that
this particular setting instance cannot be changed, otherwise the
property is 0.

DisplayInUI Flag indicating this component should be visible within a BIOS
configuration user interface application. This property field is used by
utilities such as HP BIOS Configuration for ProtectTools to filter elements
that are not applicable to a given platform.

RequiresPhysicalPresence A value of 1 indicates that attempts to modify this setting will require
interactive acknowledgement during the next system startup. Otherwise
the property is 0. This property is provided for future compatibility.

Sequence This property provides an ordering sequence for the instances being
enumerated through WMI. It is used in conjunction with the “Path”
property to help generate UI representations of the BIOS setting data.

The values are for all instances are arranged in ascending order and

14

gaps in the sequence are acceptable. In the event that multiple setting
instances share the same Sequence value, or the value is NULL, the
Path and Name information is used to determine order.

Prerequisites This property array allows the system BIOS to define prerequisite
conditions that affect the use of the current instance. This property is
provided for future compatibility.

MinLength This property identifies the minimum string length allowed when
modifying this BIOS setting. Otherwise the value is zero.

MaxLength This property defines the maximum string length in characters.

LowerBound This property defines the lower limit when modifying this setting.

UpperBound This property defines the upper limit when modifying this setting.

IntValue This property contains an integer representation of the string stored in
the Value base class property.

CurrentValue This property contains the string representation of the current active
state for this BIOS setting.

PossibleValues This property contains a string array representing the possible setting
states.

Elements This property contains a string array representing the ordered list of
elements. The first entry (Element[0]) represents the first item in the
ordered list.

Size The value contained in this property denotes the number of elements
contained within a corresponding array property. This field is used in
conjunction with either the Elements or PossibleValues array properties.

SupportedEncoding This property contains an array of strings representing the encoding
tags the BIOS supports for denoting a password paramter string.
Encoding tags are used to denote the format of a password string that
is being passed into the BIOS and follow the syntax <tag/>, where tag
is defined by the array element entries.

“kbd” denotes a string in hexadecimal format containing keyboard
scan code input. This feature should be supported by all BIOS
implementations. An example of a password structured in this format
would be “<kbd/>321539191E1F1F11181320”, which is “my
password” in US keyboard scan codes.

This field provides the ability to surface new BIOS capabilities in
defining password argument syntax without changing the interface
design. As new elements are added to this array, new encoding
features such as parameter encryption will be introduced.

IsSet This property indicates whether a particular password setting instance
is curently set (1) or blank (0). Use this property to determine that state
of a password setting, since the “Value” property for a password
instance will always be blank.

15

System Health Events

MOF Definition

#pragma namespace("\\\\.\\root\\WMI ");

class HPBIOS_BIOSEvent : HP_BIOSEvent
{
};

class HPBIOS_BIOSEvent : HP_BIOSEvent
{
 [read] string Name;
 [read] string Description;
 [read ValueMap {"0","1","2","3","4"}, Values {"Unknown",
 "Configuration Change","Button Pressed","Sensor",
 "BIOS Settings"}]
 uint32 Category;
 [read, ValueMap {"0","5","10","15","20","25","30"},
 Values {"Unknown","OK","Degraded/Warning",
 "Minor Failure","Major Failure","Critical Failure",
 "Non-recoverable Error"}]
 uint32 Severity;
 [read, ValueMap {"0","1","2","3","4","5","6","7","8",
 "9","10","11","12","13","14","15","16","17","18","..",
 "0x8000.."}, Values {"Unknown","Other","OK","Degraded",
 "Stressed","Predictive Failure","Error",
 "Non-Recoverable Error","Starting","Stopping","Stopped",
 "In Service","No Contact","Lost Communication","Aborted",
 "Dormant","Supporting Entity in Error","Completed",
 "Power Mode","DMTF Reserved","Vendor Reserved"}]
 uint32 Status;
};

Property Details

Class Property Description

Name Descriptive tag identifying the class of event.

Description Descriptive text associated with the event, such as an error message or
the physical location of the entity being evented.

Category Provides a mechanism for ffiltering events for subscription purposes.
One consumer may only be interested in button notifications, while
another may be interested in BIOS setting notificatiosn. While
providing additional flexibility, it is still possible to subscribe to all
events.

Severity Indicates the current health of the element. This attribute expresses the
health of this element but not necessarily that of its subcomponents. The
possible values are 0 to 30, where 5 means the element is entirely
healthy and 30 means the element is completely non-functional. The
following continuum is defined:

"Non-recoverable Error" (30) - The element has completed failed and
recovery is not possible. All functionality provided by this element has
been lost.

16

"Critical Failure" (25) - The element is non-functional and recovery
MAY NOT be possible.

"Major Failure" (20) - The element is failing. It is possible the some or
all of the functionality of this component is degraded or not working.

"Minor Failure" (15) - All functionality is available but some MAY be
degraded.

"Degraded/Warning" (10) - The element is in working order and all
functionality is provided. However, the element is not working to the
best of its abilities. For example, the element may not be operating at
optimal performance or it may be reporting recoverable errors.

"OK" (5) - The element is fully functional and is operating within normal
operational parameters and without error.

"Unknown" (0) - The implementation can not report on Severity at this
time.

Status Indicates the current status(es) of the element. Various operational
statuses are defined. Many of the enumeration's values are
self-explanatory. However, a few are not and are described in more
detail.

"Stressed" indicates that the element is functioning, but needs attention.
Examples of "Stressed" states are overload, overheated, etc.

"Predictive Failure" indicates that an element is functioning nominally
but predicting a failure in the near future.

"In Service" describes an element being configured, maintained,
cleaned, or otherwise administered.

"No Contact" indicates that the monitoring system has knowledge of
this element, but has never been able to establish communications with
it.

"Lost Communication" indicates that the ManagedSystemElement is
known to exist and has been contacted successfully in the past, but is
currently unreachable.

"Stopped" and "Aborted" are similar, although the former implies a
clean and orderly stop, while the latter implies an abrupt stop where
the element's state and configuration may need to be updated.

"Dormant" indicates that the element is inactive or quiesced.

"Supporting Entity in Error" describes that this element may be "OK"
but that another element, on which it is dependent, is in error. An
example is a network service or endpoint that cannot function due to
lower layer networking problems.

"Completed" indicates the element has completed its operation. This
value should be combined with either OK, Error, or Degraded so that a
client can till if the complete operation passed (Completed with OK),
and failure (Completed with Error). Completed with Degraded would
imply the operation finished, but did not complete OK or report an
error.

"Power Mode" indicates the element has additional power model
information contained in the Associated PowerManagementService
association.

Example applications
Retrieving BIOS Settings
The following script will enumerate all the available settings within a computer. This example uses
semi-synchronous access for the purpose of simplifying the example. However, the interface supports
either semisynchronous or asynchronous access.

17

Const wbemFlagReturnImmediately = 16
Const wbemFlagForwardOnly = 32
lFlags = wbemFlagReturnImmediately + wbemFlagForwardOnly

strService = "winmgmts:{impersonationlevel=impersonate}//"
strComputer = "."
strNamespace = "/root/HP/InstrumentedBIOS"
strQuery = "select * from HP_BIOSSetting"

Set objWMIService = GetObject(strService & strComputer & _
 strNamespace)

Set colItems = objWMIService.ExecQuery(strQuery,,lFlags)

Counter = 1
For Each objItem In colItems
 WScript.Echo Counter & vbTab & objItem.Name & _
 " = " & objItem.Value
 Counter = Counter + 1
Next

Changing the Ownership Tag
Here is a sample script to change the ownership tag setting. The value field may need some
modification. Note that “E302E020304” is the keyboard scan code for the keys “abc123”.

Const wbemFlagReturnImmediately = 16
Const wbemFlagForwardOnly = 32
lFlags = wbemFlagReturnImmediately + wbemFlagForwardOnly

strService = "winmgmts:{impersonationlevel=impersonate}//"
strComputer = "."
strNamespace = "/root/HP/InstrumentedBIOS"
strQuery = "select * from HP_BIOSSettingInterface"

Set objWMIService = GetObject(strService & _
 strComputer & strNamespace)
Set colItems = objWMIService.ExecQuery(strQuery,,lFlags)

‘ "Enter Ownership Tag" is the name of the BIOS setting
‘ instance object that we want to update. The correct
‘ names of available settings are found by enumerating
‘ all instances of HP_BIOSSetting.
For each objItem in colItems
 objItem.SetBiosSetting oReturn, _
 "Enter Ownership Tag", _
 "Some environment-specific inventory code", _
 "<kbd/>1E302E020304"
Next

Dim strReturn
Select Case oReturn
 Case 0 strReturn = "Success"
 Case 1 strReturn = "Not Supported"
 Case 2 strReturn = "Unspecified Error"
 Case 3 strReturn = "Timeout"
 Case 4 strReturn = "Failed"

18

 Case 5 strReturn = "Invalid Parameter"
 Case 6 strReturn = "Access Denied"
 Case Else strReturn = "..."
End Select
WScript.Echo "SetBiosSetting() returned: (" & oReturn _
 & ") " & strReturn

Changing the Boot Order
Here is a sample script to change the boot order. The value field may need some modification. Note
that “1E302E020304” is the keyboard scan code for the keys “abc123”.

Const wbemFlagReturnImmediately = 16
Const wbemFlagForwardOnly = 32
lFlags = wbemFlagReturnImmediately + wbemFlagForwardOnly

strService = "winmgmts:{impersonationlevel=impersonate}//"
strComputer = "."
strNamespace = "/root/HP/InstrumentedBIOS"
strQuery = "select * from HP_BIOSSettingInterface"

Set objWMIService = GetObject(strService & _
 strComputer & strNamespace)
Set colItems = objWMIService.ExecQuery(strQuery,,lFlags)

For each objItem in colItems
 objItem.SetBiosSetting oReturn, _
 "Boot Order", _
 "Diskette,Hard Drive,Network Controller,Multibay", _
 "<kbd/>1E302E020304"
Next

Dim strReturn
Select Case oReturn
 Case 0 strReturn = "Success"
 Case 1 strReturn = "Not Supported"
 Case 2 strReturn = "Unspecified Error"
 Case 3 strReturn = "Timeout"
 Case 4 strReturn = "Failed"
 Case 5 strReturn = "Invalid Parameter"
 Case 6 strReturn = "Access Denied"
 Case Else strReturn = "..."
End Select
WScript.Echo "SetBiosSetting() returned: (" & oReturn _
 & ") " & strReturn

Enabling Hyper-Threading
Here is a sample script to change the hyper-threading setting. The value field may need some
modification. Note that “E302E020304” is the keyboard scan code for the keys “abc123”.

Const wbemFlagReturnImmediately = 16
Const wbemFlagForwardOnly = 32
lFlags = wbemFlagReturnImmediately + wbemFlagForwardOnly

strService = "winmgmts:{impersonationlevel=impersonate}//"

19

strComputer = "."
strNamespace = "/root/HP/InstrumentedBIOS"
strQuery = "select * from HP_BIOSSettingInterface"

Set objWMIService = GetObject(strService & _
 strComputer & strNamespace)
Set colItems = objWMIService.ExecQuery(strQuery,,lFlags)

For each objItem in colItems
 objItem.SetBiosSetting oReturn, _
 "Hyper-Threading", _
 "Enable", _
 "<kbd/>1E302E020304"
Next

Dim strReturn
Select Case oReturn
 Case 0 strReturn = "Success"
 Case 1 strReturn = "Not Supported"
 Case 2 strReturn = "Unspecified Error"
 Case 3 strReturn = "Timeout"
 Case 4 strReturn = "Failed"
 Case 5 strReturn = "Invalid Parameter"
 Case 6 strReturn = "Access Denied"
 Case Else strReturn = "..."
End Select
WScript.Echo "SetBiosSetting() returned: (" & oReturn _
 & ") " & strReturn

Setting BIOS Defaults
Here is a sample script that will reset the BIOS settings to factory defaults (or the last saved default
configuration).

Const wbemFlagReturnImmediately = 16
Const wbemFlagForwardOnly = 32
lFlags = wbemFlagReturnImmediately + wbemFlagForwardOnly

strService = "winmgmts:{impersonationlevel=impersonate}//"
strComputer = "."
strNamespace = "/root/HP/InstrumentedBIOS"
strQuery = "select * from HP_BIOSSettingInterface"

Set objWMIService = GetObject(strService & _
 strComputer & strNamespace)
Set colItems = objWMIService.ExecQuery(strQuery,,lFlags)

For each objItem in colItems
 objItem.SetSystemDefaults oReturn, "<kbd/>1E302E020304"
Next

Dim strReturn
Select Case oReturn
 Case 0 strReturn = "Success"
 Case 1 strReturn = "Not Supported"
 Case 2 strReturn = "Unspecified Error"
 Case 3 strReturn = "Timeout"
 Case 4 strReturn = "Failed"

20

 Case 5 strReturn = "Invalid Parameter"
 Case 6 strReturn = "Access Denied"
 Case Else strReturn = "..."
End Select
WScript.Echo "SetSystemDefaults() returned: (" & oReturn _
 & ") " & strReturn

Monitoring Events
Monitoring system health events is one of the more advanced aspects of the HP Client Management
Interface. The approach to monitoring event presented here is designed to illustrate the capabilities of
the interface, however, in an enterprise environment a more robust event consumer model would be
recommended to monitor events without impacting system resources. HP CMI supports
semi-synchronous and asynchronous event notifications. For more information on WMI event
consumers, consult the Microsoft WMI SDK.

on error resume next

strService = "winmgmts:\\"
strComputer = "."
strNamespace = "\root\WMI"
strQuery = "select * from HPBIOS_BIOSEvent"

set objWMIService = GetObject(strService & strComputer _
 & strNamespace)

set events = objWMIService.ExecNotificationQuery(strQuery)

if err <> 0 then
 WScript.Echo Err.Description, Err.Number, Err.Source
end if

WScript.Echo "Waiting for CMI Events..."
WScript.Echo "Press Ctrl-C to exit."
WScript.Echo ""

Dim strCategory
Dim strSeverity
Dim strStatus

Counter = 1

do
 ' Note this next call will wait indefinitely.
 set CMIEvent = events.nextevent

 if err <> 0 then
 WScript.Echo Err.Number, Err.Description, Err.Source
 Exit Do
 else
 Select Case CMIEvent.category
 Case 0 strCategory = "Unknown"
 Case 1 strCategory = "Configuration Change"
 Case 2 strCategory = "Button Pressed"
 Case 3 strCategory = "Sensor"
 Case 4 strCategory = "BIOS Settings"
 Case Else strCategory = "..."

21

 End Select
 Select Case CMIEvent.severity
 Case 0 strSeverity = "Unknown"
 Case 5 strSeverity = "OK"
 Case 10 strSeverity = "Degraded/Warning"
 Case 15 strSeverity = "Minor Failure"
 Case 20 strSeverity = "Major Failure"
 Case 25 strSeverity = "Critical Failure"
 Case 30 strSeverity = "Non-recoverable Error"
 Case Else strSeverity = "..."
 End Select
 Select Case CMIEvent.status
 Case 0 strStatus = "Unknown"
 Case 1 strStatus = "Other"
 Case 2 strStatus = "OK"
 Case 3 strStatus = "Degraded"
 Case 4 strStatus = "Stressed"
 Case 5 strStatus = "Predictive Failure"
 Case 6 strStatus = "Error"
 Case 7 strStatus = "Non-Recoverable Error"
 Case 8 strStatus = "Starting"
 Case 9 strStatus = "Stopping"
 Case 10 strStatus = "Stopped"
 Case 11 strStatus = "In Service"
 Case 12 strStatus = "No Contact"
 Case 13 strStatus = "Lost Communication"
 Case 14 strStatus = "Aborted"
 Case 15 strStatus = "Dormant"
 Case 16 strStatus = "Supporting Entity in Error"
 Case 17 strStatus = "Completed"
 Case 18 strStatus = "Power Mode"
 Case Else strStatus = "..."
 End Select
 Wscript.Echo "Event received... Count: " & Counter
 Wscript.Echo vbTab & "Name:" & vbTab & vbTab _
 & CMIEvent.name
 Wscript.Echo vbTab & "Description:" & vbTab _
 & CMIEvent.description
 Wscript.Echo vbTab & "Category:" & vbTab & strCategory
 Wscript.Echo vbTab & "Severity:" & vbTab & strSeverity
 Wscript.Echo vbTab & "Status:" & vbTab & vbTab _
 & strStatus
 Counter = Counter + 1
 end if
loop

22

Security
While the HP Client Management Interface provides a high level of control over client management
instrumentation, that power must be guarded to prevent malicious, unauthorized usage.

HP CMI relies on two forms of authorization: OS level security and the BIOS administrative (F10
Setup) password assigned to each client system. Either of these security measures can be used alone,
or combined to create an additional level of protection over the interface.

Preserving Password Integrity
Many of the example applications of HP CMI presented in the previous section contained the
encoded password “E302E020304” that corresponds to the keyboard scan codes for the keys
“abc123”. Notice that this is a form of encoding, not encryption. These examples were presented in
this manner to convey the simplicity in developing custom solutions based on HP CMI. However, in an
enterprise environment you probably do not want to leave traces of the Setup Password credential
scattered throughout your script files.

To help preserve the integrity of the Setup Password credential, HP recommends using one of the
following strategies.

Remote Execution

Executing scripts and applications from a central location such as an administrative console is more
practical and secure than distributing sample scripts to individual clients through software deployment
mechanisms and executing them locally. WMI supports remote invocation from any Windows system
and follows the same domain and local system security policies. The calling interface is secured with
stream based encryption. And by default remote method execution is prevent from WMI for all but
domain administrator accounts.

Use Dynamic Arguments

Another method to preserve password integrity is to avoid carrying extra copies of the Setup
Password in code, regardless of whether that code is script-based or complied. The following code
fragment demonstrates using command-line arguments to modify BIOS settings.

Const wbemFlagReturnImmediately = 16
Const wbemFlagForwardOnly = 32
lFlags = wbemFlagReturnImmediately + wbemFlagForwardOnly

Dim oArguments, strSetting, strValue, strPassword
set oArguments = WScript.Arguments

strSetting = oArguments(0)
strValue = oArguments(1)
strPassword = oArguments(2)

strService = "winmgmts:{impersonationlevel=impersonate}//"
strComputer = "."
strNamespace = "/root/HP/InstrumentedBIOS"
strQuery = "select * from HP_BIOSSettingInterface"

Set objWMIService = GetObject(strService & _
 strComputer & strNamespace)

23

Set colItems = objWMIService.ExecQuery(strQuery,,lFlags)

For each objItem in colItems
 objItem.SetBiosSetting oReturn, _
 strSetting, strValue, strPassword
Next

Dim strResult
Select Case oReturn
 Case 0 strReturn = "Success"
 Case 1 strReturn = "Not Supported"
 Case 2 strReturn = "Unspecified Error"
 Case 3 strReturn = "Timeout"
 Case 4 strReturn = "Failed"
 Case 5 strReturn = "Invalid Parameter"
 Case 6 strReturn = "Access Denied"
 Case Else strReturn = "..."
End Select
WScript.Echo "SetBiosSetting() returned: (" & oReturn _
 & ") " & strReturn

Note that in the above example arguments are separated by spaces. To overcome this issue enclose
individual arguments within quotation (“) marks. An example command line based on the above script
would look like:

C:\>cscript example.vbs "Enter Ownership Tag" "Test"
"<kbd/>1E302E020304"

HP Client Management Password Control

HP Client Management Interface Password Control provides two modes of operation. Stand-alone, the
component can be used to convert keyboard scan codes into password text strings through a
dedicated UI and cut-and-paste into the tool or code being used to modify BIOS settings. The control
also provides an interactive mode of operation, in which the control can be invoked through an
automation interface within a calling script or management application. The following code fragment
demonstrates invoking the control from within a management script.

Const wbemFlagReturnImmediately = 16
Const wbemFlagForwardOnly = 32
lFlags = wbemFlagReturnImmediately + wbemFlagForwardOnly

strService = "winmgmts:{impersonationlevel=impersonate}//"
strComputer = "."
strNamespace = "/root/HP/InstrumentedBIOS"
strQuery = "select * from HP_BIOSSettingInterface"

Dim oPwdCtl, strPassword
Set oPwdCtl = CreateObject("hpPwdCtl.PasswordEdit")
oPwdCtl.GetPassword "Enter the Computer Setup Password:", _
 strPassword

Set objWMIService = GetObject(strService & _

24

 strComputer & strNamespace)
Set colItems = objWMIService.ExecQuery(strQuery,,lFlags)

For each objItem in colItems
 objItem.SetBiosSetting oReturn, _
 "Hyper-Threading", _
 "Enable", _
 strPassword
Next

Dim strResult
Select Case oReturn
 Case 0 strReturn = "Success"
 Case 1 strReturn = "Not Supported"
 Case 2 strReturn = "Unspecified Error"
 Case 3 strReturn = "Timeout"
 Case 4 strReturn = "Failed"
 Case 5 strReturn = "Invalid Parameter"
 Case 6 strReturn = "Access Denied"
 Case Else strReturn = "..."
End Select
WScript.Echo "SetBiosSetting() returned: (" & oReturn _
 & ") " & strReturn

Note that in order to use the HP Client Management Interface Password Control as an automation
component, it must be registered as an ActiveX automation component. To do this, just execute
“hppwdctl.exe /install”.

Configuring WMI Security
Windows Management Instrumentation (WMI) security is based on namespaces. The WMI schema is
logically partitioned into namespaces for organizational and security purposes. This partitioning
allows for varying security configurations to be applied to each namespace within the schema, or
common security configurations to be inherited between namespaces within the schema. The
WMIMGMT.MMC Microsoft Management Console (MMC) snap-in allows system administrators to
modify the security attributes on WMI namespaces. In this tool, you can set security that is based off
of the root or select individual namespaces. You can also use inheritance that is based on namespace
hierarchy.

Use the following steps to modify WMI namespace security:

1. Click Start, click Run, type wmimgmt.msc, and then click Enter.
2. Right-click WMI Control, and then click on Properties from the context menu.
3. Click the Security tab to see the namespace navigation pane.
4. Highlight a namespace and click the Security button to see the allowable permissions.
5. Set the inheritance on the namespace.

Enable: To grant read access to objects within the namespace.
Execute Methods: Allows object methods exported from the CIM Object Manager to be run.
Full Control: To grant full read/write/delete access to all CIM objects, classes, and instances.
Partial Write: To grant write access to static objects in the repository.
Provider Write: To grant write access to objects that are provided by the provider.
Read Security: To grant read-only access to WMI security information.
Edit Security: To grant read/write access to WMI security information.
Remote Access: To grant a remote computer the same rights that are allowed when connecting
from a local computer.

25

6. Click Advanced, click the specified user for whom you wish to edit the access control list, and
then click Edit.

7. Choose the permissions that you want to grant or deny, and then under Apply Onto, you see the
following options:

This namespace only
This namespace and subnamespaces
Subnamespaces only

For more information
www.hp.com/go/easydeploy

HP Client Management Solutions

www.hp.com/go/clientmanager

HP Client Manager

www.hp.com/go/ssm

HP System Software Manager

www.hp.com/products/security

HP Business PC Security Solutions
HP ProtectTools

msdn.microsoft.com/library/en-us/dnanchor/html/anch_wmi.asp

Microsoft WMI SDK documentation

msdn.microsoft.com/downloads/list/webdev.asp

Microsoft Windows Scripting Host

www.microsoft.com/technet/scriptcenter

Microsoft Script Center

www.dmtf.org/standards/cim

Common Information Model Specification

www.dmtf.org/standards/wbem

Web-Based Enterprise Management

Call to action
HP invites you to create solutions that extend your client management capabilities with HP Client
Management Interface and our additional management solutions designed to leverage and extend HP
CMI within your environment.

At HP we value your ideas and suggestions on how to improve the business of enterprise client
management. You are welcome to submit comments and questions related to HP CMI to cmi@hp.com.

© 2005 Hewlett-Packard Development Company, L.P. The information contained
herein is subject to change without notice. The only warranties for HP products and
services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

399115 002, 07/2005

