hp calculators

HP 12C Platinum
Operating Modes and Clearing Procedures

Number representation
Settings and annunciators
Memory organization
How to selectively clear memory contents
Number representation

There are many different settings that allow the user to customize the HP12C Platinum according to personal needs.

One of the basic settings is related to number representation. Basic financial operations usually show two decimals of currency, requiring two digits after the radix mark (decimal point), and this is the default representation. The HP12C Platinum allows the number of decimal digits of the number in the display to be changed with the following keystroke sequence: \texttt{f}[\text{number key}] where [number key] refers to any key from \texttt{0} to \texttt{9}.

\textbf{Example 1:} Calculate 4/7 and show the resulting value with four, six and seven digits after the radix mark.

\textbf{Solution:} The following keystroke sequence can be used:

In RPN mode:
\begin{align*}
4 & \text{ ENTER } \ 7 & \div & \ f & 4
\end{align*}

In algebraic mode:
\begin{align*}
4 & \div & 7 & = & \ f & 4
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Figure 1}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Figure 2}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.png}
\caption{Figure 3}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{Figure 4}
\end{figure}

Note that an automatic rounding occurs with the representation of the number, but internally there is always a ten-digit mantissa and a two-digit exponent of ten for each number. If it is necessary to check the mantissa of the number in display:

\begin{align*}
f & \text{ PREFIX } (\text{hold for as long as needed})
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{Figure 4}
\end{figure}
HP 12C Platinum Operating modes and clearing procedures

There is also a scientific notation mode that shows numbers with seven significant digits and the exponent of ten. This is useful if a number is too large to be displayed normally or if a number needs to be displayed in this manner to be consistent with other values.

Figure 5

If there is a need to change the radix mark from dot (default) to comma and conversely, the HP12C Platinum allows toggling from one to the other with the following sequence:

- with the calculator off, press and hold \(\text{•} \);
- turn the calculator on;
- release \(\text{•} \).

Figure 6

Settings and annunciators

Figure 7 shows all annunciators other than ALG and RPN (that affect the calculating mode) that may become visible in an HP12C Platinum display when in normal operation:

Figure 7

Their meanings are:

- **ALG**
 - Algebraic and RPN mode annunciators, respectively.
- **RPN**
 - the corresponding \(\text{f} \) or \(\text{g} \) key was pressed and its action is still active; press \(\text{f} \text{PREFIX} \) to override
- **f or g**
 - the keystroke sequence \(\text{g} \text{BEG} \) was performed to indicate that payments occur in the beginning of the composition periods; to change back to end mode and deactivate the annunciator, press \(\text{g} \text{END} \).
- **BEGIN**
 - the keystroke sequence \(\text{g} \text{DMY} \) was performed to indicate that dates are entered and shown in DD.MMYYYY format; to changes modes to M.DY and deactivate the annunciator, press \(\text{g} \text{MDY} \).
- **D.MY**
 - the keystroke sequence \(\text{STO} \text{EEX} \) was performed to indicate that odd-periods are considered with compound interest rate when TVM operations are performed; press \(\text{STO} \text{EEX} \) again to toggle the annunciator condition and use simple interest for odd-periods.
- **C**
 - the keystroke sequence \(\text{STO} \text{EEX} \) was performed to indicate that odd-periods are considered with compound interest rate when TVM operations are performed; press \(\text{STO} \text{EEX} \) again to toggle the annunciator condition and use simple interest for odd-periods.
- **PRGM**
 - either program mode is active or a program is running. If program mode is active, press \(\text{f} \text{PRG} \) to return to normal operation and deactivate the annunciator; if \(\text{RUNNING} \) is flashing in the display then a program is being executed and pressing \(\text{R/S} \) will stop it.
Note that if \(\text{RUNNING} \) is flashing in the display and the \(\text{PRGM} \) annunciator is not shown, then an internal function is being performed and pressing \(\text{R/S} \) will not stop it.

Memory Organization

In the HP12C Platinum, memory is organized as a set of registers that can hold a valid number representation. There are a total of 20 data registers, \(R_0 \) to \(R_9 \) and \(R_{10} \) to \(R_{19} \), that are available for use. There are 309 program lines available to the user for holding program instructions. If programs are entered that are larger than this, registers are converted as needed into 8 program lines each, beginning with \(R_9 \) and working down through \(R_7 \), for a maximum of 400 program lines.

Registers \(R_0 \) to \(R_9 \) and \(R_{10} \) to \(R_{19} \) are “general purpose” registers, and they can be accessed either directly by the user or by some internal functions. The shaded area represents the registers that can be automatically converted into program steps. Although registers \(R_1 \) to \(R_6 \) are general purpose registers as any other, their contents are used by statistical functions. Financial registers \(n, i, PV, PMT \) and \(FV \) are used by TVM, Bond, Depreciation and Cash-Flow functions, but can also be used to hold any valid number.

Stack

\[
\begin{array}{cccc}
T & 0.00 & R_0 & 0.00 \\
Z & 0.00 & R_1 & 0.00 \\
Y & 0.00 & R_2 & 0.00 \\
X & 0.00 & R_3 & 0.00 \\
L & 0.00 & R_4 & 0.00 \\
\end{array}
\]

Registers

\[
\begin{array}{cccc}
(\Sigma) & R_5 & 0.00 & CF_5 \\
(\Sigma x) & R_6 & 0.00 & CF_6 \\
(\Sigma x^2) & R_7 & 0.00 & CF_7 \\
(\Sigma y) & R_8 & 0.00 & CF_8 \\
(\Sigma y^2) & R_9 & 0.00 & CF_9 \\
(\Sigma xy) & R_{10} & 0.00 & CF_{10} \\
\end{array}
\]

Cash flow

\[
\begin{array}{cccc}
R_{11} & 0.00 & CF_{11} & 1.00 \\
R_{12} & 0.00 & CF_{12} & 1.00 \\
R_{13} & 0.00 & CF_{13} & 1.00 \\
R_{14} & 0.00 & CF_{14} & 1.00 \\
R_{15} & 0.00 & CF_{15} & 1.00 \\
R_{16} & 0.00 & CF_{16} & 1.00 \\
R_{17} & 0.00 & CF_{17} & 1.00 \\
R_{18} & 0.00 & CF_{18} & 1.00 \\
R_{19} & 0.00 & CF_{19} & 1.00 \\
R_{20} & 0.00 & CF_{20} & 1.00 \\
\end{array}
\]

Permanently available program steps

\[
\begin{array}{cccc}
0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
\]

Figure 8

hp calculators

HP 12C Platinum Operating modes and clearing procedures

Version 1.0
How to selectively clear memory contents

The “master clear” of the HP 12C Platinum is accomplished when the following sequence is executed:

- with the calculator off, press and hold
- turn the calculator on;
- release

If the operation is successful, the display shows:

![Figure 9]

The HP12C Platinum memory contents now match the ones shown in Figure 8.

It is possible to clear specific parts of the HP12C Platinum memory with the use of the clearing functions under -CLEAR-, on the keyboard. The different functions included are:

- clears the contents of registers R_1 to R_6 and the stack registers X, Y, Z and T to 0.00 without changing any other register contents. This allows new statistic summations to be collected.

- If the calculator is in program mode ($PRGM$ annunciator on), clears the first eight program steps to \(0 0 0 \) (Step 008 would appear as \(0 0 0 \)) and frees all registers used by programs for data storage, if any. If the calculator is in normal (run) mode, only positions the program memory to step # 000.

- clears the five financial registers n, i, PV, PMT and FV to zero.

- clears all registers containing valid numbers to their default contents, as shown in Figure 8. does not clear any program instruction, even if they are stored in registers converted to program steps.

- clears \(\text{f} \) annunciator and any partial keystroke sequence (RCL, STO, $STO +$, GTO, RCL, etc)