hp calculators

HP 12C Platinum
Mortgage loan basics

Mortgage loan and TVM calculations

Cash flow diagrams and sign conventions

Practice solving mortgage loan problems
Mortgage loan and TVM calculations

A mortgage is a financial claim against real property. The mortgage itself defines several different combinations of legal documents usually needed to finance real estate. It is common to use the term 'mortgage loan' because the amount of money borrowed to buy the real state, a loan, is covered by a mortgage. The mortgage is then given to a lending institution as a personal promise that the borrower will repay the loan.

A set of mathematics tools has been developed with the purpose of evaluating the time value of money (TVM), and the concepts of present value of money (\(PV \)), future value of money (\(FV \)), periodic payments (\(PMT \)), interest rates (\(i \)), and the number of compounding periods (\(n \)). There are many standard situations where TVM calculations can be used to solve problems, like calculating loan and savings variables. The standard HP12C Platinum features designed to solve for unknown annuity or compound interest variables with the five TVM keys \(n \), \(i \), \(PV \), \(PMT \) and \(FV \) allow problems related to savings variables to be solved easily.

Cash flow diagrams and sign conventions

The regular use of cash flow diagrams leads to a faster approach to the solution in most TVM-related problems. The key is keeping the same viewpoint through each complete calculation. The sign conventions for cash flow in the HP12C Platinum follow the simple rule: money received is positive (arrow pointing up), money paid out is negative (arrow pointing down). The cash flow diagram below represents the borrower viewpoint of the most common savings calculations and their relation with the TVM variables.

![Cash flow diagram](image)

Setting up and/or calculating each of these values is a matter of using the HP12C Platinum TVM already existing features. There are also two functions meant to be an aid when entering or retrieving annual values for \(n \) and \(i \): \(12 \times \) and \(12 \div \). Pressing \(12 \times \) is the same as pressing \(\text{ENTER} \quad 1 \quad 2 \quad \times \quad n \) in RPN mode or \(\times \quad 1 \quad 2 \quad = \quad n \) in algebraic mode, meaning the number of years can be keyed in and stored as number of months automatically. Pressing \(12 \div \) is the same as pressing \(\text{ENTER} \quad 1 \quad 2 \quad \div \quad i \) in RPN mode or \(\div \quad 1 \quad 2 \quad = \quad i \) in algebraic mode, meaning the yearly interest rate can be keyed in and stored as monthly interest rate automatically. It is also possible to retrieve the yearly-related values by pressing \(\text{RCL} \quad 9 \quad 12 \times \) (number of years) and/or \(\text{RCL} \quad 9 \quad 12 \div \) (yearly interest rate) whenever necessary.

Practice solving mortgage loan problems

Example 1: A 30-year mortgage loan is settled to buy a home rated $114,400. The bank quoted an annual interest rate of 8.75%. What is the amount of each monthly payment with these figures? The diagram in Figure 2 illustrates this situation.
Solution: Enter the relevant values in any order and calculate the PMT:

\[
8 \cdot 7 \cdot 59_{-} 12 \div 309_{-} 12 \times 114400_{-} 0 M P
\]

\[
\text{- 899.99}
\]

Answer: The amount of the monthly payment is $899.99.

Example 2: A family needs to buy a house and expects to pay no more than $1,000 monthly. A 25-year mortgage loan is secured at an annual interest rate of 6.75% compounded monthly. What is the maximum amount this family can afford and still have a $1,000 monthly payment??

Solution: Enter the relevant values in any order and calculate PV:

\[
6 \cdot 7 \cdot 59_{-} 12 \div 259_{-} 12 \times 1000_{-} 0 \text{ CHS PMT} \text{ PV}
\]

\[
144,736.33
\]

Answer: The family can now search for a $144,736.33 house with this loan.

Example 3: The family from previous example found a beautiful house for $135,500 and wants to calculate the monthly payment using the same 25-year mortgage at 6.75%, compounded monthly.

Solution: Assuming that all previous data is kept in the calculator, enter the new present value and calculate the monthly payment again:

\[
135500_{-} \text{ PV PMT}
\]

\[
\text{- 936.19}
\]

Answer: The new monthly payment is $936.19.