invent

hp calculators

HP 12C Platinum
Statistics - Linear regression

Linear regression
HP12C Platinum Statistics
Practice solving linear regression problems

Linear regression

Linear regression is a statistical method for finding a smooth straight line that best fits two or more data pairs in a sample being analyzed. Any straight line like the one shown in Figure 1 owns two specific coefficients that precisely locate it in a planar coordinate system: a y-intercept A and a slope B. These coefficients compose the straight line equation $y=A+$ $B x$. It is also important to mention that the correlation $|r|$ is always 1 when only two points are entered.

Figure 1

HP12C Platinum Statistics

In the HP12C Platinum, summations resulting from statistics data are suitable for linear regression computations. Given the y and x coordinates of any two or more points belonging to a curve, the linear regression coefficients can be easily found.

Practice solving linear regression problems

Example 1: Based on the information presented in the graphic in Figure 2, compute the y-intercept and slope to characterize the straight line. Note that the line crosses the x-axis at the origin $(0,0)$.

Figure 2
Solution: One of the points that belongs to the curve is $(0,0)$ and the other one is $(4,6)$. Both must be entered to compute the equation of the line. Be sure to clear the statistics / summation memories before starting the problem.
$f \Sigma 0$ ENTER 0 上 6 ENTER 45

2.75

Figure 3
The display shows the number of entries.

Now compute the slope (B) by entering: (Since A is already zero)
$10 \hat{y}, r$

4.50

Figure 4
Answer: The expression for this straight line has $A=0$ and $B=1.5$. The equation is $y=1.5 x+0$

Example 2: Based on the information presented in the graphic in Figure 5, compute the y-intercept and slope to characterize the straight line. Then use x-forecasting to compute the x-related coordinate for $y=5$.

Figure 5
Solution: Be sure to clear the statistics / summation memories before starting the problem.

f Σ

The data pairs must be entered before computing the coefficients.

1	ENTER	2	CHS	$\Sigma+$
4	ENTER	7	$\Sigma+$	

2.00

Figure 6
As the line does not cross the x-axis at the origin, we forecast y when $x=0$ to find the y-intercept A :
0 g \hat{y}, r

1.5 7

Figure 7
To compute the slope, now press:

0.33

Figure 8

Now it is necessary to forecast x for $y=5$.
$5 \hat{x}, r$

10.00

Answer: \quad This straight line has $A=1.67$ and $B=0.33$ and its expression is: $y=1.67+0.33 x$
Example 3: Linear programming is a common technique used to solve operational research problems by graphics inspection. Based on the information presented in the graphics in Figure 10, compute the y-intercept and slope for both straight lines S_{1} and S_{2}.

Figure 10
Solution: Be sure to clear the statistics / summation memories before starting the problem.
\square
By inspection, the y-intercept for both lines is found to be 3.5 for S_{1} and 5 for S_{2}. Now we need to compute their slope. The data pairs for S_{1} are $(10,0)$ and $(0,3.5)$:

2.00

Figure 11
The slope for S_{1} can be found with the following sequence:

-0.35
Figure 12

Now, to compute S_{2} slope it is necessary to clear the statistics / summation memories and enter $(5,0)$ and $(0,4.5)$ as the new data pairs.

2.05

Figure 13
The slope for S_{2} can be found with the same sequence as before:
 In algebraic mode: $00 \mathrm{~g} \hat{\mathrm{y}, \mathrm{r}} 1 \mathrm{D} \hat{\mathrm{y}, \mathrm{r}} \mathrm{x} \mathrm{\geqslant y} \mathrm{R} \mathrm{\downarrow}-\mathrm{x} \geqslant \mathrm{y}=$

Answer: \quad For $\mathrm{S}_{1}, A=3.5$ and $B=-0.35$. For $\mathrm{S}_{2}, A=5$ and $B=-0.90$.

$$
S_{1} \Rightarrow y=3.5-0.35 x \quad S_{2} \Rightarrow y=5-0.90 x
$$

