

Constant memory and planning
Using register contents
Understanding register arithmetic
Practice using registers to solve problems

Constant memory and planning

Because of the HP12C Platinum Constant Memory feature, any current computations may be stopped at any moment for later resumption without any data loss. In the HP12C Platinum, memory is organized as a set of registers, where each register can hold a number representation of any positive or negative value with a 10-digit mantissa and a two-digit integer, positive or negative exponent of ten. When writing programs, part of these registers may also be converted to seven program steps each.

Using register contents

Most of these registers can be directly addressed anytime it is necessary, provided that the register is available. Special care must be taken in regard to make sure that the chosen register isn't being used for other purposes. As a general rule, two basic operations can always be performed over existing register contents: storing and retrieving (or recalling) numbers.

Assuming that the display contains a value to be stored, and that the storage location (register name) is already defined, the keystroke sequence below may be performed to store the information: STO [key]. To retrieve the information stored in one of the registers back to the display and use it in further calculations, it is necessary to use the following keystroke sequence: RCL [key].

In both sequences, [key] refers to any valid keystroke sequence that defines the location (which register) where the information in the display will be stored in or retrieved from. The valid keys for these registers are:

0 to 9
$\bullet 0$ to $\cdot 9$
$\mathrm{n}, \mathrm{i}, \mathrm{PV}, \mathrm{PMT}$ and FV

Example 1: \quad The index for conversion between American Dollars and Euros is stipulated as 1.00 Euro = US\$1.19. Which keystroke sequence stores this index in register R_{1} ?

Solution: \quad The complete sequence for typing the index in and storing its value in register R_{1} is:
$1-1,9$ STO 1

i. 19

Figure 1

The image in Figure 1 shows the display contents after the keystroke sequence is executed.

Understanding register arithmetic

Along with storing and retrieval, the five lower-numbered registers (0 through 4) allow storage arithmetic with their contents and the display number.

Figure 3 shows all valid keystrokes:

Figure 2
Example 2: The index for conversion between American Dollars and Euros has its valued raised by 1%. What is the keystroke sequence that updates the index in register R_{1} ?

Solution: When the keystrokes below are used, the index is updated in R_{1}. The diagram shown in Figure 4 illustrates what happens with the register contents when STO X 1 is performed.

Figure 3
If it is necessary to check the resulting value stored in R_{1} or use it in further calculations, the following keystroke sequence must be used to bring its contents to the display:

RCL 1

1.20

Figure 4

To check the significant digits (mantissa) of the value already in the display, the following keystroke sequence can be used:
f PREFIX

1201900000

Figure 5
Answer: \quad Now the relationship is set to 1.00 Euro = US\$1.20.

Some remarks about register arithmetic:

1. When one of the registers is going to be used as an accumulator for summations with the use of sequences like STO +0 to 4), either the first value must be stored with STO (0 to 4) alone or a zero must be stored first.
2. When one of the registers is going to be used as an accumulator for products with the use of sequences like STO X (0 to 4), either the first value must be stored with STO (0 to 4) alone or a one must be stored first.
3. The sequence STO $\div(0$ to 4$)$ when the display contains a zero causes the message Error 0 to be displayed (division by zero) and no operation is performed.

Practice using registers to solve problems

Example 3: \quad The sales price of the last 10 homes sold in the Parkdale community were: $\$ 198,000 ; \$ 185,000$; $\$ 205,200 ; \$ 225,300 ; \$ 206,700 ; \$ 201,850 ; \$ 200,000 ; \$ 189,000 ; \$ 192,100 ; \$ 200,400$. What is the average of these sales prices?

Solution: \quad Register R_{0} will be used to perform all operations. Then the resulting value will be brought back to the display. The average is computed using the following expression,

$$
\bar{x}=\frac{\sum d_{n}}{n}
$$

Figure 6

In this example, n is 10 (ten) and d_{n} is each sales price. So, all values are accumulated in R_{0} and then the average is obtained by dividing the total accumulated by the number of entries. Be sure to initialize the contents of R_{0} before starting the problem:

0 STO 0

0.00

Figure 7

Now, each sales price is typed in and added to the existing amount in R_{0} :

$198,000.00$

Figure 8

The second sales price is entered by pressing:
185000 STO 00

185,000.00

Figure 9
Be sure to key in all sales prices and press STO +0 . When the last sales price is keyed in and accumulated, its value remains in the display:

205000 STO +0 2 25300 STO +0

200000 sto +0 1 8 9 0 0 0 sTO +0
192000 STO +0 2 0 0 400 STO +0

200,40000

Figure 10

Now, divide R_{0} (the accumulated sales) by ten.
10 STO $\div 0$

10.00

Figure 11

At this point, R_{0} contains the resulting value: the average sales price for homes sold in Parkdale community. To display this average, press:

RCL 0

$200,355.00$

Figure 12
Answer: \quad The average sales price for homes sold in Parkdale community is $\$ 200,355.00$.

