
invent

hp calculators

HP 35s House Payment Calculations

House payments
The Time Value of Money on the HP 35s
Practice solving house payment calculation problems

HP 35s
Scientific Calculator
24.620224 .3412 $15 i 5$

HP 35s House Payment Calculations

House payments

The payment required to pay off a house over time involves the solution of an ordinary annuity with the value of the payment as the unknown variable.

The Time Value of Money on the HP 35s

To solve time value of money problems on the HP 35s, the formula below is entered into the flexible equation solver built into the calculator. This equation expresses the standard relationship between the variables in the time value of money formula. The formula uses these variables: N is the number of compounding periods; \boldsymbol{I} is the periodic interest rate as a percentage (for example, if the annual interest rate is 15% and there are 12 payments per year, the periodic interest rate, \boldsymbol{i}, is $15 \div 12=1.25 \%$); \boldsymbol{B} is the initial balance of loan or savings account; \boldsymbol{P} is the periodic payment; \boldsymbol{F} is the future value of a savings account or balance of a loan.

Equation: $\quad P \times 100 \times\left(1-(1+I \div 100)^{\wedge}-N\right) \div I+F \times(1+I \div 100)^{\wedge}-N+B$

To enter this equation into the calculator, press the following keys on the HP 35s:

RCL $\mathrm{N}+\mathrm{RCL} \mathrm{B}$ ENTER

To verify proper entry of the equation, press
(5) SHOW
and hold down the SHOW key. This will display the equation's checksum and length. The values displayed should be a checksum of CEFA and a length of 41.

To solve for the different variables within this equation, the SOLVE button is used. This key is the right shift of the EQN key.

Notes for using the SOLVE function with this equation:

1) If your first calculation using this formula is to solve for the interest rate I, press $\square \square \square$ before beginning.
2) Press EQN. If the time value of money equation is not at the top of the list, press $\boldsymbol{\sim}$ 人or to scroll through the list until the equation is displayed.
3) Determine the variable for which you wish to solve and press:
a) \rightarrow SOLVE N to calculate the number of compounding periods.
b) SOLVE to calculate the periodic interest rate. Note: this will need to be multiplied by the number of compounding periods per year to get the annual rate. If the compounding is monthly, multiply by 12.
c) SOLVE B to calculate the initial balance (or Present Value) of a loan or savings account.
d) \rightarrow SOLVE to calculate the periodic payment.
e) SOLVE F to calculate the future value of a loan or savings account.
4) When prompted, enter a value for each of the variables in the equation as you are prompted and press R/S. The solver will display the variables' existing value. If this is to be kept, do not enter any value but press R/S to continue. If the value is to be changed, enter the changed value and press R / S. If a variable had a value in a previous calculation but is not involved in this calculation (as might happen to the variable P (payment) when solving a compound interest problem right after solving an annuity problem), enter a zero for the value and press R/S.
5) After you press \mathbb{R} / \mathbf{S} for the last time, the value of the unknown variable will be calculated and displayed.
6) To do another calculation with the same or changed values, go back to step 2 above.

The SOLVE feature will work effectively without any initial guesses being supplied for the unknown variable with the exception noted above about the variable I in this equation. This equation follows the standard convention that money in is considered positive and money out is negative.

The practice problems below illustrate using this equation to solve a variety of problems involving house payment calculations.

Practice solving house payment calculation problems

Example 1: Jill bought a house for $\$ 210,000$. Her 30 -year loan will have an interest rate of 6%, compounded monthly. What is the size of her monthly house payment?

Solution: First, enter the time value of money equation into the HP 35 s solver as described earlier in this document.
Then press EQN and press $\boxed{\text { An }}$ or to scroll through the equation list until the time value of money equation is displayed. Then press:

SOLVE P

The HP 35s SOLVER displays the first variable encountered in the equation as it begins its solution. The value of 0.0000 is displayed below if this is the first time the time value of money equation has been solved on the HP 35 s calculator. If any previous equations have used a variable used in the time value of money equation, they may already have been assigned a value that would be displayed on your HP 35s display. Follow the keystrokes shown below and the solution should be found as described.

Figure 1
In RPN mode, press: 6 ENTER 1
In algebraic mode, press: 6 6

In RPN mode, press: 3 E ENTER $12 x$ R/S
In algebraic mode, press: 30×1 ENTER R/S

[^0]In either RPN or algebraic mode, press: 0 R/S

In either RPN or algebraic mode, press: 200000 R/S

Figure 5
Answer: \quad The required monthly deposit is $\$ 1,259.06$.
Example 2: Samantha bought a house for $\$ 165,000$. Her 15 -year loan will have an interest rate of 5%, compounded monthly. What is the size of her monthly house payment?

Solution: First, enter the time value of money equation into the HP 35 s solver as described earlier in this document.
Then press EQN and press $\boldsymbol{\sim}$ or to scroll through the equation list until the time value of money equation is displayed. Then press:

SOLVE

The HP 35s SOLVER displays the first variable encountered in the equation as it begins its solution. These displays are not shown in the rest of this example. Follow the keystrokes shown below and the solution should be found as described.

In RPN mode, press: 5 ENTER 2 R/S
15 ENTER $12 \times \mathrm{R} / \mathrm{S}$
0 R/S
1060004 50 R/S
In algebraic mode, press:

1 (5) 1 [ENTER R/S
0 R/S
$1065000+16$

(Enters I)
(Enters N)
(Enters F)
(Enters B)
(Enters I)
(Enters N)
(Enters F)
(Enters B)

Figure 6

Answer:
$\$ 1,304.81$ (Note that the loan amount was entered as a negative number)

Example 3: Jeff bought a house for $\$ 125,000$ and financed it with a 20 -year loan at a rate of 5.25%, compounded

 monthly. What is the size of Jeff's monthly house payment?Solution: First, enter the time value of money equation into the HP 35 s solver as described earlier in this document.
Then press EQN and press $\boldsymbol{\sim}$ or to scroll through the equation list until the time value of money equation is displayed. Then press:

SOLVE P

The HP 35s SOLVER displays the first variable encountered in the equation as it begins its solution. These displays are not shown in the rest of this example. Follow the keystrokes shown below and the solution should be found as described.

In RPN mode, press: 5025 ENTER 2 20 ENTER 10 (2 R/S (Enters N) 0 R/S
10250004 R (5
In algebraic mode, press: $5 \cdot 250$ ENTER R/S (Enters I)
20 D 02 ENTER R/S (Enters N)
0 R/S
(Enters F)
025000 (2R/S (Enters B)

Figure 7
Answer: $\quad \$ 842.31$ (Note that the loan amount was entered as a negative number)

[^0]: Figure 3

