

hp calculators

HP 35s Indirect register data packing program

The HP 35s and indirect registers

Saving program memory space

Saving indirect storage space

The program listing

Usage instructions

Entering program lines

Line by line analysis of the program

Saving keystrokes

Usage examples

hp calculators

HP 35s Indirect register data packing program

hp calculators - 2 - HP 35s Indirect register data packing program - Version 1.0

The HP 35s and indirect registers

The HP35s contains registers or variables that can be referenced directly or indirectly. Variables A through Z can be
directly addressed, as in a ºeA instruction. Indirect addressing uses two of these direct variables as indices that
hold the location or address where an operation is to be performed. The two variables that are used this way are I and
J. The indirect registers begin at address 0 and can go up to 800, if the user allocates that many. That is 801 additional
storage registers compared to the earlier HP 33s calculator.

It is also possible to address the direct variables and the statistics variables indirectly using addresses of -1 through -32.
Address -1 would refer to the direct variable A, address -26 would refer to the direct variable Z, and -27 trough -32
would refer to the statistical summation registers. This is shown in a table on page 14-22 of the HP 35s user’s guide.

The way indirect addressing works is to store the number corresponding to the register you wish to use in either I or
J. Then you perform a ºe7 or ºeA (or any other allowed operation). For example, if you wish to
recall a value stored in direct register A, you can either press hA or store -1 into I by ºe7 and then
perform a h7. Both will recall the value stored in A.

At first glance, that may not appear to be worth doing, since it takes more key presses to use the indirect method.
However, where it becomes very useful is when you need to work with a lot of numbers, often within a program, or when
you may not be able to know in advance where the number you wish to use is stored.

Saving program memory space

For example, suppose you have 20 numbers you wish to sum. A direct program might be written having these numbers
stored in A through T. The program to sum them (which would take 41 lines of code and at least 120 bytes of
memory), might look like:

A001 LBL A
A002 RCL A
A003 RCL B
A004 +

A005 RCL C
A006 +
A007 RCL D
A008 +

…
A039 RCL T
A040 +
A041 RTN

On the other hand, a program using the indirect registers might have the numbers stored in indirect locations 1 through
20. The program to sum the 20 values might look like this one. This program only takes 10 lines of code and only 32
bytes of code. Sure, developing the second program might take a little more time than the first, but it comes at a great
reduction of program memory space used.

A001 LBL A
A002 20
A003 STO I
A004 RCL (I)

A005 DSE I
A006 RCL (I)
A007 +
A008 DSE I

A009 GTO A006
A010 RTN

Saving indirect storage space

To allocate a portion of the HP 35s memory to hold indirect registers, store a non-zero value into the highest register
needed. If you need 100 registers to hold numbers and if locations 0 to 99 will work for your need, storing a non-zero
value into indirect storage location 100 will allocate HP 35s calculator memory to create the block of indirect registers 0
through 100. Warning: If you store a zero into memory location 100, the HP 35s will dynamically reclaim all zero indirect

hp calculators

HP 35s Indirect register data packing program

hp calculators - 3 - HP 35s Indirect register data packing program - Version 1.0

storage registers starting with 100 and working down. This can cause quite a shock when you’re not expecting it in a
program or calculation.

Each indirect register, like each direct register and each stack register, can hold a variety of objects, such as a real
number, a complex number, or a 2-D or 3-D vector. Since these take varying amounts of memory to hold them, the HP
35s allocates 37 bytes per register for each location, whether the register needs that many bytes or not (see page 14-24
of the HP 35s user’s guide). This means that a group of indirect registers that are only going to hold a real number are
only using 1/3 of the possible storage space per register.

To reclaim some of this space that might otherwise be unused, it is possible to pack three real numbers into a 3-D vector
and store the group into a single indirect register. This can save a tremendous amount of calculator memory. Storing 100
real numbers using indirect registers normally would use 3700 bytes. Packing them using the program in this learning
module will only use 1/3 of that memory, which will then be available for other uses.

This program originally appeared in Datafile, a publication of HPCC. HPCC is a voluntary, independent body run by and
for users of handheld and portable computers and calculators. The club has been helping members for more than 20
years to get the most from their Hewlett Packard equipment and to further the exchange of information and ideas. You
can find out more about HPCC at their website http://www.hpcc.org/ .

The program listing. Program length is 338 bytes. Checksum C4F6. RDN is < (Roll Down). All flag-related instructions
(SF, CF, and FS?) are accessed through ¹·. The conditional tests (x=0?, x<0?) are accessed through
º. In several areas of this program, stack manipulations occur that look rather odd but manage to preserve the
pre-existing stack contents. RPN mode is assumed in the program and throughout these instructions. The program uses
one global label, variable register I, and flags 0, 1, 2, and 3.

Y001 LBL Y
Y002 CF 0
Y003 CF 1
Y004 CF 2
Y005 CF 3
Y006 x=0?
Y007 GTO Y062
Y008 x < 0?
Y009 SF 0
Y010 ABS
Y011 RDN
Y012 IDIV(REGT-1,3)
Y013 STO I
Y014 RDN
Y015 LASTx
Y016 ABS
Y017 RDN
Y018 RMDR(REGT-1,3)
Y019 x=0?
Y020 SF 1
Y021 FS? 1
Y022 GTO Y030
Y023 RDN
Y024 REGT-1
Y025 x=0?
Y026 SF 2
Y027 FS? 2
Y028 GTO Y030
Y029 SF 3

Y030 RDN
Y031 FS? 1
Y032 [1, 0, 0]
Y033 FS? 2
Y034 [0, 1, 0]
Y035 FS? 3
Y036 [0, 0, 1]
Y037 RCLx (I)
Y038 FS? 0
Y039 GTO Y058
Y040 +/-
Y041 RDN
Y042 XEQ Y063
Y043 RCL+ (I)
Y044 RDN
Y045 ABS
Y046 CLx
Y047 LASTx
Y048 RDN
Y049 XEQ Y063
Y050 RDN
Y051 REGZ+REGT
Y052 STO(I)
Y053 RDN
Y054 LASTx
Y055 LASTx
Y056 CLX
Y057 +
Y058 CF 0

Y059 CF 1
Y060 CF 2
Y061 CF 3
Y062 RTN
Y063 FS? 1
Y064 REGTx[1, 0, 0]
Y065 FS? 2
Y066 REGTx[0, 1, 0]
Y067 FS? 3
Y068 REGTx[0, 0, 1]
Y069 RTN
Y070 STO I
Y071 [0, 0, 0]
Y072 STO(I)
Y073 DSE I
Y074 GTO Y072
Y075 STO(I)
Y076 CLSTK
Y077 RTN

http://www.hpcc.org/

hp calculators

HP 35s Indirect register data packing program

hp calculators - 4 - HP 35s Indirect register data packing program - Version 1.0

Usage Instructions:

1) Initialize the indirect registers to be used by providing the number of logical registers desired divided by 3 rounded up
to the next highest integer. Then press XEQ Y070. For example, if you want 100 logical registers, give this routine 100 /
3, or 34 as an input. Note that you should probably keep at least 200-300 bytes free on the 35s.

2) To store a number, place the number to be stored in Y and the logical register location in X and press XEQ Y ENTER.
Upon completion, the number just stored is in X. The original Z is now in Y and the original T is now in Z and T. LASTx is
cleared.

3) To recall a number, place the logical register location to be recalled in X as a negative number and press XEQ Y
ENTER. The recalled number is in X. The original contents of Y, Z, and T are undisturbed. LASTx contains the
associated identity vector.

Entering program lines. How to enter some of the program lines might not appear obvious at first. Here are the key
presses to place them into the program.

Line Y012: d¹g2<ÕÕÏÃ1Õ3Ï
Line Y018: d¹g3<ÕÕÏÃ1Õ3Ï
Line Y024: d<ÕÕÏÃ1Ï
Line Y037: h¸7
Line Y043: hÙ7

Line Y046: º¡1
Line Y051: d<ÕÏÙ<ÕÕÏÏ
Line Y056: º¡1
Line Y064: d<ÕÕÏ¸º31¹¨0¹¨0Ï

Line Y066: d<ÕÕÏ¸º30¹¨1¹¨0Ï

Line Y068: d<ÕÕÏ¸º30¹¨0¹¨1Ï

Line Y076: º¡5

Line by line analysis of the program. The description below explains what the program is doing in more detail. It may
be of interest to see how the program operates.

Lines What they do
Lines Y002 through Y005: Reset flags.
Lines Y006 andY007: Exits the program if an attempt is made to store into logical register zero, which is not

supported. Lines Y008 and Y009 set flag zero if the logical register location is input as a
negative, indicating a recall register input. Lines Y010 through Y013 store the indirect
register number to be used into the I register.

Lines Y014 through Y018: Determines the position in the 3-D vector where the value to be stored/recalled is found.
Lines Y019 through Y029: Sets flag 1, 2, or 3, depending on the position within the 3-D vector for the value to be

stored/recalled.
Lines Y033 through Y036: Enters the appropriate identity vector.
Line Y037: Extracts the proper value from the identity vector
Lines Y038 and Y039: Exits the program if this is a recall entry.
Line Y040 and Y041: Changes the sign of the extracted value and place it in stack register T.
Line Y042: Calls a subroutine that creates an identity vector with the value of 1 in the vector replaced

by the extracted value with its sign changed.

hp calculators

HP 35s Indirect register data packing program

hp calculators - 5 - HP 35s Indirect register data packing program - Version 1.0

Line Y043: Places in X the vector from the proper indirect register now with a zero in the location being
replaced.

Lines Y044 through Y048: These lines are stack manipulations to preserve the stack and store the previously
extracted value into LASTx.

Line Y049: Calls the subroutine that creates a vector with the proper position holding the value to be
stored with the other locations holding a zero.

Line Y050: Places this vector in T. At this point, register Z of the stack contains the original vector with
a zero in the position where the value is to be stored, and register T of the stack contains a
vector that has zeroes in the locations not being changed and the value being stored in the
proper location within the vector.

Line Y051: Adds these vectors in T and Z together and places the result in X.
Line Y052: Stores this new vector back into the proper indirect register.
Lines Y053 through Y057: Cleans up the stack so that the original value is in X, the original level Z is in Y, and the

original level T is in Z and T.
Lines Y058 through Y062: Cleans up the flags and exit the program.
Lines Y063 through Y069: These lines are the subroutine called at lines Y042 and Y049.
Lines Y070 through Y077: These lines are the initialization routine which stores vectors containing zeroes in the

proper indirect registers.

Usage Examples. This program can be used in manual run mode or from within a program. The table below shows
several examples of how it might be used. Since the program preserves the stack, usage does not require much special
consideration, other than LASTx, as noted above. Program usage is the same as run mode usage – the routine is simply
called as a subroutine.

Usage Examples Keystrokes
1) Set aside 50 indirect registers.
50 divided by 3 is 17, rounded up to the next
highest integer.

17 tY070

2) Store the following numbers:
1.23456789 into logical register 10. 1.23456789 Ï10 tYÏ
55 into logical register 7. 55 Ï 7 tYÏ
35.456565 into logical register 34. 35.455565 Ï 34 tYÏ

3) Compute the following:
Logical register 34 divided by logical register 7. 34 ztYÏ7z

tYÏ¯
Multiply logical register 7 by 3. Multiply logical
register 34 by 5. Subtract the difference.

7 ztYÏ3 ¸34
ztYÏ5 ¸Ã

Add logical register 10 to the result just
computed.

10 ztYÏÙ

hp calculators

HP 35s Indirect register data packing program

hp calculators - 6 - HP 35s Indirect register data packing program - Version 1.0

Saving keystrokes. Storing a number manually into an indirect register requires six key presses (ºeI
ºe7) while this program only requires four key presses, not counting the location and value to be stored which
would be the same in both instances. In the example below, 15 is stored into indirect register 10. Manually, this requires
10 key presses. Using this program only requires 8 key presses.

Manually Using this program
10ºeI 15 ºe7 15 Ï 10 tYÏ

Recalling the same number from indirect register 10 takes 7 key presses manually and only 6 key presses using this
program.

Manually Using this program
10ºeI h7 10 z tYÏ

	The HP 35s and indirect registers

