in v ent

hp calculators

HP 33S Applications in electrical engineering

Applications in electrical engineering
Practice solving problems in electrical engineering

- Application 1: Transmission line impedance
- Application 2: Resistive attenuator design

Applications in electrical engineering

This training aid will illustrate the application of the HP 33S calculator to several problems arising in electrical engineering. These examples are far from exhaustive, but do indicate the incredible flexibility of the HP 33S calculator.

Practice solving problems in electrical engineering

Application 1: Transmission line impedance

The formulas below allow for the computation of the high frequency characteristic impedance for three types of transmission lines, where D is the input wire spacing, d is the wire diameter, ε is the relative permittivity, and h is the wire height.

$$
\begin{array}{lll}
\text { Open two wire line } & \mathrm{Z}_{0}=\frac{120}{\sqrt{\varepsilon}} \mathrm{LN}\left(\frac{2 \mathrm{D}}{\mathrm{~d}}\right) & \text { Figure 1 } \\
\text { Single wire near ground } & \mathrm{Z}_{0}=\frac{138}{\sqrt{\varepsilon}} \mathrm{LOG}\left(\frac{4 \mathrm{~h}}{\mathrm{~d}}\right) & \text { Figure 2 } \\
\text { Coaxial line } & \mathrm{Z}_{0}=\frac{60}{\sqrt{\varepsilon}} \mathrm{LN}\left(\frac{\mathrm{D}}{\mathrm{~d}}\right) & \text { Figure 3 }
\end{array}
$$

In the examples that follow, the HP 33S will be used to solve problems involving these equations. If repetitive calculations with these equations is foreseen, they could be entered into the HP 33S as equations and solved in that manner.

Example 1: Compute Z_{0} for $R G-218 / U$ coaxial cable with $D=0.68$ inches, $d=0.195$ inches, and $\varepsilon=2.3$ (polyethylene).
 LN x

In algebraic mode: $\quad 6 \times 0 \div 2 \times 3 / \sqrt{x} \times$
 LN ENTER

Figure 4
Answer: $\quad 49.42$ ohms.
Example 2: Compute Z_{0} for an open 2-wire line with $D=6$ inches, $d=0.0808$ inches, and $\varepsilon=1$ (air).
Solution: \quad Note that the division by the square root of 1 in the solutions below is unnecessary, but included for clarity.
 LN x
 LN ENTER

Figure 5
Answer：$\quad 600.08$ ohms．
Example 3：Compute Z_{0} for an air line consisting of a single 0.1285 inch wire six inches from a ground plane．
Solution：Note that $\varepsilon=1$ ，since this is an air line．
In RPN mode： 1038 ENTER 1 x国 LOG

（⿴囗G ENTER

Figure 6
Answer：$\quad 313.44$ ohms．

Application 2：Resistive attenuator design

The T attenuator can be used to match between two resistive impedances， $\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$ ，as shown in the diagram in Figure 7.

Figure 7
For the T attenuator，the formulas below will compute the minimum loss of the attenuator and values for the resistors R1，R2，and R3，which will yield an attenuator having any desired loss．

$$
\begin{array}{lc}
\text { Minimum loss } & \mathrm{M}=10 \times \mathrm{LOG}\left(\sqrt{\frac{\mathrm{R}_{\text {in }}}{\mathrm{R}_{\text {out }}}}+\sqrt{\frac{\mathrm{R}_{\text {in }}}{\mathrm{R}_{\text {out }}}-1}\right)^{2} \\
\text { Resistor R3 } & \mathrm{R} 3=\frac{2 \times \sqrt{\mathrm{N} \times \mathrm{R}_{\text {in }} \times \mathrm{R}_{\text {out }}}}{\mathrm{N}-1}
\end{array}
$$

Figure 8

Figure 9
hp calculators
HP 33S Applications in electrical engineering
Resistor R1 $\quad \mathrm{R} 1=\mathrm{R}_{\mathrm{in}} \times\left(\frac{\mathrm{N}+1}{\mathrm{~N}-1}\right)-\mathrm{R} 3$
Figure 10

Resistor R2

$$
\mathrm{R} 2=\mathrm{R}_{\text {out }} \times\left(\frac{\mathrm{N}+1}{\mathrm{~N}-1}\right)-\mathrm{R} 3
$$

Figure 11
where N is defined as $\mathrm{N}=10^{\left(\frac{\text { DbLoss }}{10}\right)}$
Figure 12
Example 1：Determine the element values for a T attenuator matching 75Ω to 50Ω with a 6 dB loss．
Solution：\quad Solve for the value of N and store it in variable N ．
In RPN mode： 100 ENTER 6 ENTER 100 STO N
In algebraic mode： 100 Ux Rob

```
10^(6\div10)=
39811
```

Solve for minimum loss．
 （园

In algebraic mode： 1 OX
 （GOG ENTER）

Figure 14
Solve for the resistor R3 and store its value in variable R．

In algebraic mode： $2 x \mathrm{D}_{2}$
$\div ⿴ 囗$ RCL $N \square \square \square$ ENTER STOR

Solve for the resistor R1．


```
75\times(<N+1)\div(N-1
433440
```

Figure 16
Solve for the resistor R2．

In algebraic mode： $50 \times \mathbb{O}$


```
50\times(<N+1)\div(N-1
1.5715
```

Figure 17
Answer：\quad The minimum loss is 5.7195 dB ．The value of R 1 is 43.3440 ohms， R 2 is 1.5715 ohms，and R3 is 81.9734 ohms．

Example 2：Determine the element values for a T attenuator matching 50Ω to 50Ω with a 10 dB loss．
Solution：\quad Solve for the value of N and store it in variable N ．
In RPN mode： 100 ENTER 10 ENTER $00 \square \square_{0}$
In algebraic mode： $000^{\mu x} ⿴ 囗 ⿰ 丿 ㇄$

Figure 18
Solve for minimum loss．
In RPN mode： 50 ERTER 5 0 ［ （GOG 1 OX

HTSO
LOG ENTER

Figure 19
Solve for the resistor R3 and store its value in variable R.

In algebraic mode: $2 \times \square$

Solve for the resistor R1.

 RDRDGRCL ENTER

```
50x((N+1)\div(N-1.
25.9747
```

Solve for the resistor R2.

 BDRDGRCL ENTER

```
50\times(<N+1)\div(N-1.
259747
```

Answer: \quad The minimum loss is 0.0 dB . The value of R1 is 25.9747 ohms, R 2 is 25.9747 ohms, and R3 is 35.1364 ohms.

